
btrdb-python Documentation
Release v5.32

PingThingsIO

Apr 19, 2024

CONTENTS

1 User Guide 3
1.1 Quick Start . 3
1.2 Installing . 7
1.3 Concepts . 8
1.4 Working with btrdb . 11
1.5 BTrDB Explained . 30
1.6 API Reference . 32
1.7 Changelog . 88

2 Indices and tables 91

Python Module Index 93

Index 95

i

ii

btrdb-python Documentation, Release v5.32

Welcome to btrdb-python’s documentation. We provide Python access to the Berkeley Tree Database (BTrBD) along
with some select convenience methods. If you are familiar with other NoSQL libraries such as pymongo then you will
likely feel right at home using this library.

BTrDB is a very, very fast timeseries database. Specifically, it is a time partitioned, version annotated, clustered solution
for high density univariate data. It’s also incredibly easy to use. Checkout out our Installing page to get setup and then
visit Quick Start for a brief tour. Some sample code is below to whet your appetite.

import btrdb
from btrdb.utils.timez import to_nanoseconds

establish connection to a server
conn = btrdb.connect("192.168.1.101:4410")

search for streams and view metadata
streams = conn.streams_in_collection("USEAST_NOC1/90807")
for stream in streams:

print(stream.collection, stream.name, stream.tags())

retrieve a single stream
stream = conn.stream_from_uuid("07d28a44-4991-492d-b9c5-2d8cec5aa6d4")

print one hour of time series data starting at 1/1/2018 12:30:00 UTC
start = to_nanoseconds(datetime(2018,1,1,12,30))
end = start + (60 * 60 * 1e9)
for point, _ in stream.values(start, end):

print(point.time, point.value)

return the data as an arrow table instead
data = stream.arrow_values(start, end)

CONTENTS 1

https://github.com/PingThingsIO/btrdb-python/actions
https://btrdb.readthedocs.io/en/latest/
https://pypi.org/project/btrdb/
https://pypi.python.org/project/btrdb/

btrdb-python Documentation, Release v5.32

2 CONTENTS

CHAPTER

ONE

USER GUIDE

The remaining documentation can be found below. If there is anything you’d like added or corrected, please feel free
to submit a pull request or open an issue in Github!

1.1 Quick Start

1.1.1 Connecting to a server

Connecting to a server is easy with the supplied connect function from the btrdb package.

>>> import btrdb
>>> # connect with API key
>>> conn = btrdb.connect("192.168.1.101:4411", apikey="123456789123456789")
>>> conn
<btrdb.conn.BTrDB at 0x...>

Get Platform Information

>>> conn.info()
{'majorVersion': ...,
'minorVersion': ...,
'build': ...,
'proxy': {...}}

Refer to the connection API documentation page.

1.1.2 Retrieving a Stream

In order to interact with data, you’ll need to obtain or create a Stream object. A number of options are available to get
existing streams.

3

btrdb-python Documentation, Release v5.32

Find streams by collection

Multiple streams are often organized under a single collection which is similar to the concept of a directory path. To
search for all streams under a given collection you can use the streams_in_collection method.

>>> streams = conn.streams_in_collection("USEAST_NOC1/90807")
>>> for stream in streams:
>>> print(stream.uuid, stream.name)

Find stream by UUID

A method has also been provided if you already know the UUID of a single stream you would like to retrieve. For
convenience, this method accepts instances of either str or UUID.

>>> stream = conn.stream_from_uuid("07d28a44-4991-492d-b9c5-2d8cec5aa6d4")

1.1.3 Viewing a Stream’s Data

To view data within a stream, you’ll need to specify a time range to query for as well as a version number (defaults to
latest version). Remember that BTrDB stores data to the nanosecond and so Unix timestamps will need to be converted
if needed.

>>> start = datetime(2018,1,1,12,30, tzinfo=timezone.utc)
>>> start = start.timestamp() * 1e9
>>> end = start + (3600 * 1e9)

>>> for point, _ in stream.values(start, end):
>>> print(point.time, point.value)

Some convenience functions are available to make it easier to deal with converting to nanoseconds.

>>> from btrdb.utils.timez import to_nanoseconds, currently_as_ns

>>> start = to_nanoseconds(datetime(2018,1,1, tzinfo=timezone.utc))
>>> end = currently_as_ns()

>>> for point, _ in stream.values(start, end):
>>> print(point.time, point.value)

You can also view windows of data at arbitrary levels of detail. One such windowing feature is shown below.

>>> # query for windows of data 10,000 nanoseconds wide using a depth of zero
>>> # which is accurate to the nanosecond.
>>> params = {
... "start": 1500000000000000000,
... "end": 1500000000010000000,
... "width": 2000000,
... "depth": 0,
... }
>>> for window in stream.windows(**params):
>>> for point, version in window:
>>> print(point, version)

4 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Return data as arrow tables

Instead of returning data a RawPoint at a time, which can be more computationally intensive, there is now the ability
to return the data in a tabular format from the start, which can drastically save on run time as well as facilitate interoper-
ability with many more data-science driven tools. Apache Arrow is a language agnostic columnar data schema that has
become a defacto standard for in-memory data analytics. All data retrieval methods in BTrDB now have corresponding
arrow- prepended methods that natively return pyarrow data tables.

>>> s.arrow_values(start=1500000000000000000, end=1500000002000000001).to_pandas()
time value

0 2017-07-14 02:40:00+00:00 1.0
1 2017-07-14 02:40:00.100000+00:00 2.0
2 2017-07-14 02:40:00.200000+00:00 3.0
3 2017-07-14 02:40:00.300000+00:00 4.0
4 2017-07-14 02:40:00.400000+00:00 5.0
5 2017-07-14 02:40:00.500000+00:00 6.0
6 2017-07-14 02:40:00.600000+00:00 7.0
7 2017-07-14 02:40:00.700000+00:00 8.0
8 2017-07-14 02:40:00.800000+00:00 9.0
9 2017-07-14 02:40:00.900000+00:00 10.0

1.1.4 Using StreamSets

A StreamSet is a wrapper around a list of Stream objects with a number of convenience methods available. Future
updates will allow you to query for streams using a SQL-like syntax but for now you will need to provide a list of
UUIDs.

The StreamSet allows you to interact with a group of streams rather than at the level of the individual Stream object.
Aside from being useful to see concurrent data across streams, you can also easily transform the data to other data
structures or even serialize the data to disk in one operation.

Some quick examples are shown below but please review the API docs for the full list of features.

Note: In the following examples, notice that the end time is not inclusive of the data that is present at end . start is
inclusive while end is exclusive. This is the case for all BTrDB data query operations.

[𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)

>>> streams = db.streams(*uuid_list)

>>> # serialize data to disk as CSV
>>> streams.filter(start=1500000000000000000, end=1500000000900000000).to_csv("data.csv")

>>> # convert data to a pandas DataFrame
>>> streams.filter(start=1500000000000000000, end=1500000000900000000).to_dataframe()

nw/stream0 nw/stream1
time
1500000000000000000 nan 1.0
1500000000100000000 2.0 nan
1500000000200000000 nan 3.0
1500000000300000000 4.0 nan

(continues on next page)

1.1. Quick Start 5

https://arrow.apache.org/

btrdb-python Documentation, Release v5.32

(continued from previous page)

1500000000400000000 nan 5.0
1500000000500000000 6.0 nan
1500000000600000000 nan 7.0
1500000000700000000 8.0 nan
1500000000800000000 nan 9.0

>>> # materialize the streams' data
>>> streams.filter(start=1500000000000000000, end=1500000000900000000).values()
[[RawPoint(1500000000100000000, 2.0),

RawPoint(1500000000300000000, 4.0),
RawPoint(1500000000500000000, 6.0),
RawPoint(1500000000700000000, 8.0),
RawPoint(1500000000900000000, 10.0)],
[RawPoint(1500000000000000000, 1.0),
RawPoint(1500000000200000000, 3.0),
RawPoint(1500000000400000000, 5.0),
...

Return data as arrow tables

StreamSets are also able to return arrow tables for the group of streams they represent. This is especially convenient
and is usually much faster than using the traditional RawPoint -based data representation. We recommend using the
arrow functions whenever possible.

>>> # convert data to a pandas DataFrame, using pyarrow
>>> streams.filter(start=1500000000000000000, end=1500000000900000000)
... .arrow_to_dataframe()

NW/stream0 NW/stream1
time
2017-07-14 02:40:00+00:00 NaN 1.0
2017-07-14 02:40:00.100000+00:00 2.0 NaN
2017-07-14 02:40:00.200000+00:00 NaN 3.0
2017-07-14 02:40:00.300000+00:00 4.0 NaN
2017-07-14 02:40:00.400000+00:00 NaN 5.0
2017-07-14 02:40:00.500000+00:00 6.0 NaN
2017-07-14 02:40:00.600000+00:00 NaN 7.0
2017-07-14 02:40:00.700000+00:00 8.0 NaN
2017-07-14 02:40:00.800000+00:00 NaN 9.0

>>> # materialize the streams' data as an arrow table
>>> streams.filter(start=1500000000000000000, end=1500000000900000000).arrow_values()

pyarrow.Table
time: timestamp[ns, tz=UTC] not null
b29204f4-6c13-4ec7-a149-88e2ff950a72: double not null
99a0d0b0-e24f-4875-b7d8-eae0036f2149: double not null

time: [

(continues on next page)

6 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

(continued from previous page)

... [2017-07-14 02:40:00.000000000Z,2017-07-14 02:40:00.100000000Z,

... 2017-07-14 02:40:00.200000000Z,2017-07-14 02:40:00.300000000Z,

... 2017-07-14 02:40:00.400000000Z,2017-07-14 02:40:00.500000000Z,

... 2017-07-14 02:40:00.600000000Z,2017-07-14 02:40:00.700000000Z,

... 2017-07-14 02:40:00.800000000Z]]
b29204f4-6c13-4ec7-a149-88e2ff950a72: [[nan,2,nan,4,nan,6,nan,8,nan]]
99a0d0b0-e24f-4875-b7d8-eae0036f2149: [[1,nan,3,nan,5,nan,7,nan,9]]

1.2 Installing

The btrdb package has only a few requirements and is relatively easy to install. A number of installation options are
available as detailed below.

1.2.1 Installing with pip

We recommend using pip to install btrdb-python on all platforms:

$ pip install btrdb

With btrdb>=5.30.2, there are now extra dependencies that can be installed with pip. We recommend installing the
data extra dependencies (the second option in the code block below).

$ pip install "btrdb>=5.30.2" # standard btrdb
$ pip install "btrdb[data]>=5.30.2" # btrdb with data science packages included␣
→˓(recommended)
$ pip install "btrdb[all]>=5.30.2" # btrdb with testing, data science and all other␣
→˓optional packages

To get a specific version of btrdb-python supply the version number. The major version of this library is tied to the
major version of the BTrDB database as in the 4.X bindings are best used to speak to a 4.X BTrDB database, the 5.X
bindings for 5.X platform..

$ pip install "btrdb[data]==5.30.2"

To upgrade using pip:

$ pip install --upgrade btrdb

1.2.2 Installing with Anaconda

We recommend installing using pip.

1.2. Installing 7

btrdb-python Documentation, Release v5.32

1.3 Concepts

If you are relatively new to BTrDB, then there are a few things you should be aware of about interacting with the
server. First of all, time series databases such as BTrDB are not relational databases and so they behave differently,
have different access methods, and provide different guarantees.

The following sections provide insight into the high level objects and aspects of their behavior which will allow you to
use them effectively.

Note: Data requests are fully materialized at this time. A future release will include the option to process data using
generators to save on memory usage.

1.3.1 BTrDB Server

Like most time series databases, the BTrDB server contains multiple streams of data in which each stream contains a
data point at a given time. However, BTrDB focuses on univariate data which opens a host of benefits and is one of the
reasons BTrDB is able to process incredibly large amounts of data quickly and easily.

1.3.2 Points

Points of data within a time series make up the smallest objects you will be dealing with when making calls to the
database. Because there are different types of interactions with the database, there are different types of points that
could be returned to you: RawPoint and StatPoint.

RawPoint

The RawPoint represents a single time/value pair and is the simpler of the two types of points. This is most useful when
you need to process every single value within the stream.

>>> # view time and value of a single point in the stream
>>> point.time
1547241923338098176

>>> point.value
120.5

StatPoint

The StatPoint provides statistics about multiple points and gives aggregation values such as min, max, mean, count and
stddev (standard deviation). This is most useful when you don’t need to touch every individual value such as when
you only need the count of the values over a range of time.

These statistical queries execute in time proportional to the number of results, not the number of underlying points (i.e
logarithmic time) and so you can attain valuable data in a fraction of the time when compared with retrieving all of the
individual values. Due to the internal data structures, BTrDB does not need to read the underlying points to return these
statistics!

8 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

>>> # view aggregate values for points in a stream
>>> point.time
1547241923338098176

>>>point.min
42.1

>>> point.mean
78.477

>>> point.max
122.4

>>> point.count
18600

>>> point.stddev
3.4

1.3.3 Tabular Data

In addition to working with the RawPoint or StatPoint objects, newer versions of the platform now natively support
some tabular data formats as well. This is enabled for commercial customers and are available using the stream.
arrow_ or streamset.arrow_ methods. Refer to the arrow enabled queries page and the API docs

1.3.4 Streams

Stream s represent a single series of time/value pairs. As such, the database can hold an almost unlimited amount of
individual streams. Each stream has a collection which is similar to a “path” or grouping for multiple streams. Each
steam will also have a name as well as a uuid which is guaranteed to be unique across streams.

BTrDB data is versioned such that changes to a given stream (time series) will result in a new version for the stream.
In this manner, you can pin your interactions to a specific version ensuring the values do not change over the course of
your interactions.

Note: If you want to work with the most recent version/data then specify a version of 0 (the default).

Each stream has a number of attributes and methods available and these are documented within the API Reference
section of this publication. But the most common interactions by users are to access the UUID, tags, annotations,
version, and underlying data.

Each stream uses a UUID as its unique identifier which can also be used when querying for streams. Metadata is provided
by tags and annotations which are both provided as dictionaries of data. tags are used internally and have very
specific keys while annotations are more free-form and can be used by you to store your own metadata.

>>> # retrieve stream's UUID
>>> stream.uuid
UUID("0d22a53b-e2ef-4e0a-ab89-b2d48fb2592a")

>>> # retrieve stream's current version
>>> stream.version()

(continues on next page)

1.3. Concepts 9

btrdb-python Documentation, Release v5.32

(continued from previous page)

244

>>> # retrieve stream tags
>>> stream.tags()
{'name': 'L1MAG', 'unit': 'volts', 'ingress': ''}

>>> # retrieve stream annotations
>>> stream.annotations()
({'poc': 'Salvatore McFesterson', 'region': 'northwest', 'state': 'WA'}, 23)

>>> # loop through points in the stream
>>> for point, _ in stream.values(end=1547241923338098176, version=133):
>>> print(point)
RawPoint(1500000000100000000, 2.4)
RawPoint(1500000000200000000, 2.8)
RawPoint(1500000000300000000, 3.6)
...

1.3.5 StreamSets

Often you will want to query and work with multiple streams instead of just an individual stream - StreamSets allow
you to do this effectively. It is a light wrapper around a list of Stream objects with convenience methods provided to
help you work with multiple streams of data.

As an example, you can filter the stream data with a single method call and then easily transform the data into other
data types such as a pandas DataFrame or to disk as a CSV file. See the examples below for a quick sample and then
visit our API docs to see the full list of features provided to you.

Note: StreamSet methods that filter and operate on the StreamSet object (like StreamSet.filter) return new
copies of the StreamSet itself rather than modifying in place. Similar to how most pandas.DataFrame methods re-
turn a new DataFrame object. This lets you compose multiple functions in a single call, which can improve readability,
but can be tricky if you are not expecting this behavior.

Lets explore a common use-case, filtering a streamset.

>>> # create a streamset and apply a few filters
>>> streamset = btrdb.stream.StreamSet(list_of_streams)
>>> print(f"Total streams: {len(streamset)}")
Total streams: 89

>>> streamset.filter(units="Volts")
>>> print(f"Total streams: {len(streamset)}")
Total streams: 89

>>> filtered_streamset = streamset.filter(units="Volts")
>>> print(f"Total streams: {len(filtered_streamset)}")
Total streams: 23

>>> multiple_filters_streamset = (streamset.filter(unit="Volts")
>>> .filter(name="Sensor 1")

(continues on next page)

10 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

(continued from previous page)

>>> .filter(annotations={"phase":"A"})
>>>)
>>> print(f"Total streams: {len(multiple_filters_streamset)}")
Total streams: 1

>>> # establish database connection and query for streams by UUID
>>> db = connect()
>>> uuid_list = ["0d22a53b-e2ef-4e0a-ab89-b2d48fb2592a", ...]
>>> streams = db.streams(*uuid_list)

>>> streams.filter(start=1500000000000000000).to_csv("data.csv")

>>> streams.filter(start=1500000000000000000).to_dataframe()
time NW/stream0 NW/stream1

0 1500000000000000000 NaN 1.0
1 1500000000100000000 2.0 NaN
2 1500000000200000000 NaN 3.0
3 1500000000300000000 4.0 NaN
4 1500000000400000000 NaN 5.0
5 1500000000500000000 6.0 NaN
6 1500000000600000000 NaN 7.0
7 1500000000700000000 8.0 NaN
8 1500000000800000000 NaN 9.0
9 1500000000900000000 10.0 NaN

1.3.6 Apache-Arrow Accelerated Methods

• Refer to Arrow-enabled Queries

1.4 Working with btrdb

Please review the guided tour linked below to get a better understanding of how to interact with the BTrDB database.

1.4.1 Server Connection and Info

There are a number of options available when connecting to a BTrDB server or server cluster. First, you will need to
identify the appropriate IP or FQDN to use as well as the access port.

By default BTrDB servers expose port 4410 for unencrypted access and 4411 for encrypted access using TLS. You
may also opt for authentication using an API key which can be provided to you by the BTrDB server administrators.
Using such a key will require the TLS port (4411) as attempting to use a different port with an API key will raise an
exception.

1.4. Working with btrdb 11

btrdb-python Documentation, Release v5.32

Connecting to servers

The btrdb library comes with a high level connect function to interface with a BTrDB server. Upon successfully
connecting, you will be returned a BTrDB object which is the starting point for all of your server interactions.

For your convenience, you may default all connection parameters to environment variables if these are configured
on your system. If no arguments are provided, the btrdb.connect function will attempt to connect using the
BTRDB_ENDPOINTS and BTRDB_API_KEY environment variables.

Several connection options are shown in the code below:

import btrdb

connect using BTRDB_ENDPOINTS and BTRDB_API_KEY ENV variables
conn = btrdb.connect()

connect without credentials
conn = btrdb.connect("192.168.1.101:4410")

connect without credentials using TLS
conn = btrdb.connect("192.168.1.101:4411")

connect with API key
conn = btrdb.connect("192.168.1.101:4411", apikey="123456789123456789")

Using Profiles

In addition to providing the endpoint and API key directly (or through environment variables), you may provide a
profile name which looks into your PredictiveGrid credentials file at $HOME/.predictivegrid/credentials.yaml. Using
profiles is meant as a (optional) convenience device and may also be supplied through the environmental variable
$BTRDB_PROFILE.

import btrdb

connect using your own "research" profile
conn = btrdb.connect(profile="research")

The credentials file is in YAML format as shown below.

research:
name: "research"
btrdb:
endpoints: "research.example.com:4411"
api_key: "d976a2d61103feb2235441fd6887955c"

default:
name: "default"
btrdb:
endpoints: "btrdb.example.com:4411"
api_key: "e666a2d61103feb2235441fd68879440"

12 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Connection Info Resolution

The connect function is quite aggressive about finding ways to connect to the server and power users could get into
odd edge cases if using multiple profiles with incomplete entries. For troubleshooting purposes, the connect function
performs the following steps to determine the correct server credentials.

1. Load profile connection info with the BTRDB_PROFILE environment variable or load the default profile if not
found.

2. Overwrite the profile data with BTRDB_ENDPOINTS and BTRDB_API_KEY environment variables if available.

3. Overwrite accumulated connection data with endpoints and api_key arguments if supplied.

Viewing server status

Server version and connection information can be viewed by calling the info method of the server object as shown
below.

conn = btrdb.connect()
conn.info()
>> {'majorVersion': 5, 'build': '5.0.0', 'proxy': {'proxyEndpoints': '192.168.1.101:4410
→˓'}}

1.4.2 Querying and Managing Streams

With BTrDB, you can easily create, delete, and query for streams using simple method calls. Simple examples are
included below but please review the API docs for further options.

Create a Stream

Creating a stream requires only a UUID, collection, and dictionary for the initial tags.

conn = btrdb.connect()

stream = conn.create(
uuid=uuid.uuid4(),
collection="NORTHWEST/90001",
tags={"name": "L1MAG", "unit": "volts"}

)

Delete a Stream

Deleting a stream can be performed by calling the obliterate method on the stream object. If the stream could not be
found than an error is raised.

conn = btrdb.connect()
stream = conn.stream_from_uuid("66466a91-dcfe-42ea-9e88-87c51f847944")
stream.obliterate()

1.4. Working with btrdb 13

btrdb-python Documentation, Release v5.32

Find by UUID

To retrieve your stream from the server at a later date, you can easily query for it by using the UUID it was created
with. As a convenience, you can provide either a UUID object or a string of the UUID value. If a stream matching the
supplied UUID cannot be found then None will be returned.

conn = btrdb.connect()
stream = conn.stream_from_uuid("71466a91-dcfe-42ea-9e88-87c51f847942")

Look up collections

You can look up collections found in the server by using the list_collections method, which returns a list of string
collection names. Additionally, you can use the starts_with parameter to filter the results to include only collections
that begin with the provided prefix. Omitting the starts_with parameter will return all available collections from
the server.

conn = btrdb.connect()
collections = conn.list_collections(starts_with="NORTHWEST")

Finding by collection

You can also search for multiple streams by collection using the server object’s streams_in_collection method
which will return a simple list of Stream instances. Aside from the collection name, you can provide more information
such as tags and annotations. Please see the API docs for more detail.

conn = btrdb.connect()
streams = conn.streams_in_collection("NORTHEAST/NH")

Querying Metadata

Finally, you can query for metadata using standard SQL although at the moment, only the streams table is available.
SQL queries can be submitted using the query method which accepts both a stmt and params argument. The stmt
should contain the SQL you’d like executed with parameter placeholders such as $1 or $2 as shown below.

conn = btrdb.connect()
stmt = "SELECT uuid FROM streams WHERE name = $1 OR name = $2"
params = ["Boston_1", "Boston_2"]

for row in conn.query(stmt, params):
print(row)

The SQL query results are returned as a list of dictionaries where each key matches a column from your SQL projection.
You can choose your columns from the schema of the streams table as follows.

14 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Column Type Nullable
uuid uuid not null
collection character varying(256) not null
name character varying(256) not null
unit character varying(256) not null
ingress character varying(256) not null
property_version bigint not null
annotations hstore

1.4.3 Managing Stream Data

BTrDB allows you to insert data and delete data using Stream objects.

Inserting Data

You can insert data into a Stream at any time - even for times that already exist! As we will later see, querying data will
return RawPoint and StatPoint objects however inserting data requires only a time int and value float within in
a tuple object (tuple(int, float)).

After inserting your data, the server will return a new version number for your stream.

payload = [
(1500000000000000000, 1.0), (1500000000000100000, 2.1),
(1500000000000200000, 3.3), (1500000000000300000, 5.1),
(1500000000000400000, 5.7), (1500000000000500000, 6.1),

]
version = stream.insert(payload)

Deleting Data

To delete data from a stream you must provide a range (start/end) of time to the delete method.

Because you are modifying data, the version number is incremented and will be returned from the server at the end of
your call. Keep in mind that data is never truly gone as you can query for the deleted data using an older version of the
Stream.

version = stream.delete(start=1500000000000000000, end=1520000000000000000)

1.4.4 Managing Stream Metadata

BTrDB has multiple options for storing stream metadata including collection, tags, annotations, and others. Most
metadata is returned as a string, or specialized object such as the UUID. Tags and annotations are returned as dict
objects.

There is also the concept of the “property version” which is a version counter that applies only to the metadata and
is separate from the version incremented with changes to the data. See the API docs for Stream.annotations or
Stream.update for more information.

1.4. Working with btrdb 15

btrdb-python Documentation, Release v5.32

Viewing Metadata

Viewing the metadata for a Stream is as simple as calling the appropriate property or method. In cases where the data
is not expected to change quickly, a Stream instance will provide you with cached values unless you force it to refresh
with the server.

UUID

The uuid property of a Stream is read-only and will return an instance of class UUID.

stream.uuid
>> UUID('07d28a44-4991-492d-b9c5-2d8cec5aa6d4')

Tags

Tags are special key/value metadata that is most often used by the database for internal purposes. As an example, the
name of a Stream is actually stored in the tags. While you can update tags, it is not recommended that you add new
tags or delete existing tags. Tag values have a 255 character limit.

stream.tags(refresh=True)
>> {'name': 'L1MAG', 'unit': 'volts', 'ingress': ''}

Annotations

Similar to tags, annotations are key/value pairs that are available for your use to store extra information about the
Stream.

Because annotations may change more often than tags, a metadata version number is also returned when asking for
annotations. This version number is incremented whenever metadata (tags, annotations, collection, etc.) are updated
but not when making changes to the underlying time series data.

By default the method will attempt to provide a cached copy of the annotations however you can request the latest
version from the server using the refresh argument. As with tags, annotations values also have a 255 character limit.

stream.annotations(refresh=True)
>> ({'owner': 'Salvatore McFesterson', 'state': 'NH'}, 44)

Name and Collection

The name and collection properties of a Stream are read-only and will return instances of str. Note that the name
property is just a convenience as this value can also be found within the tags.

stream.collection
>> 'NORTHEAST/VERMONT/Burlington'

stream.name
>> 'L1MAG'

16 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Updating Metadata

An update method is available if you would like to make changes to the tags, annotations, or collection. By default,
all updates are implemented as an UPSERT operation and a single change could result in multiple increments to the
property version (the version of the metadata).

Upon calling this method, the library will first verify that the local property version of your stream object matches the
version found on the server. If the two versions do not match then you will not be allowed to perform an update as this
implies that the data has already been changed by another user or process.

collection = 'NORTHEAST/VERMONT'
annotations = {

'owner': 'Salvatore McFesterson',
'state': 'VT',
'created': '2018-01-01 12:42:03 -0500'

}
property_version = stream.update(

collection=collection,
annotations=annotations

)

If you would like to remove any keys from your annotations you must use the replace=True keyword argument. This
will ensure that the annotations dictionary you provide completely replaces the existing values rather than perform an
UPSERT operation. The example below shows how you could remove an existing key from the annotations dictionary.

annotations, _ = stream.anotations()
del annotations["key_to_delete"]
stream.update(annotations=annotations, replace=True)

1.4.5 Viewing Stream Data

At a high level, there are two options available when you are ready to retrieve the time series data in a stream. You may
view the values directly by timestamp or you can view a window of data at a resolution of your choice. When viewing
by window, there are further options available with different arguments and related performance benefits.

View Individual Data Points

To view the values directly, call the Stream.values method which will fully materialize the stream values at the
stream version you specify (use the default value of zero as the latest version). A start and end argument is required
when making this request.

Calling Stream.values will return a series of tuple, with each item containing a RawPoint, and version of the
stream (int). As described in the API reference, a RawPoint has both a time and value property.

start = 1500000000000000000
end = 1547241923338098176

for point, _ in stream.values(start=start, end=end, version=133):
print(point)

>> RawPoint(1500000000000000000, 2.35)
>> RawPoint(1500000000100000000, 2.41)
>> RawPoint(1500000000200000000, 2.8)

(continues on next page)

1.4. Working with btrdb 17

btrdb-python Documentation, Release v5.32

(continued from previous page)

>> RawPoint(1500000000300000000, 3.66)
...

Helpers for Dates/Times

If you are interested in finding the closest point to a particular datetime, there is the Stream.nearestmethod. Alterna-
tively, if you want to know the first or last points in a stream, you can call the Stream.earliest and Stream.latest
methods. These two are often useful if you would like to view all of the data within the stream using the Stream.
windows method below (it is not recommended that you query for all the data using the Stream.values method due
to the memory consumption implied). Each of these three methods returns a tuple containing a RawPoint and the data
version number. The exact timestamp can be obtained from the RawPoint. Keep in mind that all of these methods
accept a version argument so that you can ask for the earliest, latest, or nearest point from a previous version
of the stream.

stream = db.stream_from_uuid("6f8ebaf0-78ea-416e-a0ff-5c3c5d83c279")
stream.earliest()
>> (RawPoint(1364860800000000000, 42516.03), 3934)
stream.earliest()[0].time
>> 1364860800000000000

View Windows of Data

If you don’t need to view every single point of data, then it is faster to view higher order representations of the data.
BTrDB stores data in a tree structure such that the leaves of the tree contain actual values and higher nodes store
statistical data (min, max, mean, etc.) summaries. In this schema viewing summaries of data involves reading from
higher levels of the tree and therefore less nodes need to be read from disk.

This use case of wanting a high level summary of data is quite common. For example, when rendering the plot of a
time series it will often be useful to present a view at the resolution of one hour, one day, or perhaps one year. With
samples that occur at greater than 1Hz this requires you to summarize the values and plot the average (or min, max,
etc.) values rather than each individual value.

Because BTrDB is usually providing summaries of data when windowing, it returns instances of StatPoint rather than
RawPoint. A StatPoint contains statistical information about a range of time and specifically provides properties
for min, mean, max, count, stddev, and the start time for which the statistical summaries cover.

For statistical aggregates of your data, the Stream.aligned_windows method is the fastest way to query your data.
Each point returned is a statistical aggregate of all the raw data within a window of width 2^pointwidth nanoseconds.

Note that start is inclusive, but end is exclusive. That is, results will be returned for all windows that start in the
interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑). If end < start+2^pointwidth you will not get any results. If start and end are not powers of two,
the bottom pointwidth bits will be cleared. Each window will contain statistical summaries of the window. Statistical
points with count == 0 will be omitted.

start = 1500000000000000000
end = 1500000001000000000

view underlying data for comparison
for point, _ in stream.values(start=start, end=end):

print(point)
>> RawPoint(1500000000000000000, 1.0)
>> RawPoint(1500000000100000000, 2.0)

(continues on next page)

18 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

(continued from previous page)

>> RawPoint(1500000000200000000, 3.0)
>> RawPoint(1500000000300000000, 4.0)
>> RawPoint(1500000000400000000, 5.0)
>> RawPoint(1500000000500000000, 6.0)
>> RawPoint(1500000000600000000, 7.0)
>> RawPoint(1500000000700000000, 8.0)
>> RawPoint(1500000000800000000, 9.0)
>> RawPoint(1500000000900000000, 10.0)

aggregate over 2^28 nanoseconds (268,435,456)
pointwidth = 28

view data aggregates
for point, _ in stream.aligned_windows(start=start, end=end,

pointwidth=pointwidth):
print(point)

>> StatPoint(1499999999814008832, 1.0, 1.0, 1.0, 1, 0.0)
>> StatPoint(1500000000082444288, 2.0, 3.0, 4.0, 3, 0.816496580927726)
>> StatPoint(1500000000350879744, 5.0, 6.0, 7.0, 3, 0.816496580927726)
>> StatPoint(1500000000619315200, 8.0, 8.5, 9.0, 2, 0.5)

The Stream.windows method of a Stream allows you to request windows of data while specifying the precision of the
data you require. Each window will cover width nanoseconds in length. Precision of the result is determined by the
depth parameter such that each window will be accurate to 2^depth nanoseconds.

Using a larger depth value will result in faster query execution from the database. For instance, if you are viewing a
24 hours of data you may only require a precision of +/- 1 second and so a depth of 30 may be appropriate. A chart of
sample depths are provided below.

Depth Calculation Precision in Nanoseconds Time
0 2^0 1 1 nanosecond
10 2^10 1024 ~1 microsecond
20 2^20 1048576 ~1 millesecond
30 2^30 1073741824 ~1 second

As usual when querying data from BTrDB, the start time is inclusive while the end time is exclusive. Note: that if
your last window spans across the end time then it will not be included in the results.

>>> start = 1500000000000000000
>>> end = 1500000001000000000

>>> # view underlying data for comparison
>>> for point, _ in stream.values(start=start, end=end):
>>> print(point)
RawPoint(1500000000000000000, 1.0)
RawPoint(1500000000100000000, 2.0)
RawPoint(1500000000200000000, 3.0)
RawPoint(1500000000300000000, 4.0)
RawPoint(1500000000400000000, 5.0)
RawPoint(1500000000500000000, 6.0)
RawPoint(1500000000600000000, 7.0)

(continues on next page)

1.4. Working with btrdb 19

btrdb-python Documentation, Release v5.32

(continued from previous page)

RawPoint(1500000000700000000, 8.0)
RawPoint(1500000000800000000, 9.0)
RawPoint(1500000000900000000, 10.0)

>>> # each window spans 300 milliseconds
>>> width = 300000000

>>> # request a precision of roughly 1 millisecond
>>> depth = 20

>>> # view windowed data
>>> for point, _ in stream.windows(start=start, end=end,
... width=width, depth=depth):
StatPoint(1500000000000000000, 1.0, 2.0, 3.0, 3, 0.816496580927726)
StatPoint(1500000000300000000, 4.0, 5.0, 6.0, 3, 0.816496580927726)
StatPoint(1500000000600000000, 7.0, 8.0, 9.0, 3, 0.816496580927726)

1.4.6 Working with StreamSets

Often you will want to query and work with multiple streams instead of just an individual stream - StreamSets allow
you to do this effectively. It is a light wrapper around a list of Stream objects with convenience methods provided to
help you work with multiple streams of data.

Creating a StreamSet

Creating a StreamSet is relatively simple assuming you have a UUID for each stream that should be a member. In the
future, other options may exist such as providing collection or tag matching parameters.

UUIDs = [
uuid.UUID('0d22a53b-e2ef-4e0a-ab89-b2d48fb2592a'),
uuid.UUID('17dbe387-89ea-42b6-864b-f505cdb483f5'),
uuid.UUID('71466a91-dcfe-42ea-9e88-87c51f847942'),
uuid.UUID('570aa71d-fb4f-456f-8533-2b11a28fa1f5')

]

streams = conn.streams(*UUIDs)

If you’ve already obtained a list of Stream objects, you may create a StreamSet directly by providing a list of streams
for initialization.

streams = StreamSet([stream1, stream2, stream3])

20 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Filtering

To apply query parameters to your request, you should use the filter method to supply a start or end argument.

Keep in mind that filter will return a new object so you can keep multiple filtered StreamSets in memory while
you explore your data. The filter method may be called multiple times but only the final values will be used when
it is time to fulfill the request by the server.

from btrdb.utils.timez import currently_as_ns, to_nanoseconds

streams = conn.streams(*UUIDs)

start = to_nanoseconds(datetime(2016, 1, 1, 0, 0, 0))
end = to_nanoseconds(datetime(2016, 1, 3, 12, 0, 0))

replace instance with a filtered version from 1/1/2016 00:00:00 to
1/3/2016 12:00:00
streams = streams.filter(start=start, end=end)

create a new instance with epoch as start and the current time as
the end parameters
alt = streams.filter(start=0, end=currently_as_ns())

Aside from filtering results at query execution, you may also filter the streams that should be included in the new object.
For instance, you may wish to create a new StreamSet containing only voltage streams or only from a specific collection.

To filter the available streams, you may provide a collection, name, or unit argument. If you provide a string, then
a case-insensitive exact match will be used to select the desired streams. You may instead provide a compiled regex
expression which will be used with re.search to choose the streams to include.

select only voltage streams
voltage_streams = streams.filter(unit="volts")

select only voltage or amperage streams using regex pattern
other_streams = streams.filter(unit=re.compile("volts|amps"))

Retrieving Data

There are three options available when you are ready to process the data from the server. All options are fully materi-
alized but are organized in different ways according to what is more convenient for you.

StreamSet.values()

Calling the values method will materialize the streams using the filtering parameters you specified. The data will be
returned to you as a list of lists. Each member list contains tuples of RawPoint, int for the data and stream version.

This method aligns data by stream so you can easily deal with all of the data on a stream by stream basis. The following
example shows a toy dataset which consists of 4 streams.

streams.values()
>>[[RawPoint(1500000000100000000, 2.0),
>> RawPoint(1500000000300000000, 4.0),
>> RawPoint(1500000000500000000, 6.0),

(continues on next page)

1.4. Working with btrdb 21

btrdb-python Documentation, Release v5.32

(continued from previous page)

>> RawPoint(1500000000700000000, 8.0),
>> RawPoint(1500000000900000000, 10.0)],
>> [RawPoint(1500000000000000000, 1.0),
>> RawPoint(1500000000200000000, 3.0),
>> RawPoint(1500000000400000000, 5.0),
>> RawPoint(1500000000600000000, 7.0),
>> RawPoint(1500000000800000000, 9.0)],
>> [RawPoint(1500000000000000000, 1.0),
>> RawPoint(1500000000100000000, 2.0),
>> RawPoint(1500000000300000000, 4.0),
>> RawPoint(1500000000400000000, 5.0),
>> RawPoint(1500000000600000000, 7.0),
>> RawPoint(1500000000700000000, 8.0),
>> RawPoint(1500000000800000000, 9.0),
>> RawPoint(1500000000900000000, 10.0)],
>> [RawPoint(1500000000000000000, 1.0),
>> RawPoint(1500000000100000000, 2.0),
>> RawPoint(1500000000200000000, 3.0),
>> RawPoint(1500000000300000000, 4.0),
>> RawPoint(1500000000400000000, 5.0),
>> RawPoint(1500000000500000000, 6.0),
>> RawPoint(1500000000600000000, 7.0),
>> RawPoint(1500000000700000000, 8.0),
>> RawPoint(1500000000800000000, 9.0),
>> RawPoint(1500000000900000000, 10.0)]]

StreamSet.rows()

By contrast, the rows method aligns data by time rather than by stream. Each row of data contains points for a specific
time with the None value used if a given stream does not contain a value at that time.

Stream data is ordered according to the order of the initial UUIDs that were used when creating the StreamSet.

for row in streams.rows():
print(row)

>> (None, RawPoint(1500000000000000000, 1.0), RawPoint(1500000000000000000, 1.0),␣
→˓RawPoint(1500000000000000000, 1.0))
>> (RawPoint(1500000000100000000, 2.0), None, RawPoint(1500000000100000000, 2.0),␣
→˓RawPoint(1500000000100000000, 2.0))
>> (None, RawPoint(1500000000200000000, 3.0), None, RawPoint(1500000000200000000, 3.0))
>> (RawPoint(1500000000300000000, 4.0), None, RawPoint(1500000000300000000, 4.0),␣
→˓RawPoint(1500000000300000000, 4.0))
>> (None, RawPoint(1500000000400000000, 5.0), RawPoint(1500000000400000000, 5.0),␣
→˓RawPoint(1500000000400000000, 5.0))
>> (RawPoint(1500000000500000000, 6.0), None, None, RawPoint(1500000000500000000, 6.0))
>> (None, RawPoint(1500000000600000000, 7.0), RawPoint(1500000000600000000, 7.0),␣
→˓RawPoint(1500000000600000000, 7.0))
>> (RawPoint(1500000000700000000, 8.0), None, RawPoint(1500000000700000000, 8.0),␣
→˓RawPoint(1500000000700000000, 8.0))
>> (None, RawPoint(1500000000800000000, 9.0), RawPoint(1500000000800000000, 9.0),␣
→˓RawPoint(1500000000800000000, 9.0))

(continues on next page)

22 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

(continued from previous page)

>> (RawPoint(1500000000900000000, 10.0), None, RawPoint(1500000000900000000, 10.0),␣
→˓RawPoint(1500000000900000000, 10.0))

Transforming to Other Formats

A number of transformation features have been added so that you can work in the tools and APIs you are most com-
fortable and productive with. At the moment, we support the numpy and pandas libraries if you have them installed
and available to be imported.

Keep in mind that calling these methods will materialize the requested data in memory. A few examples follow but
please visit the API documentation to see the full list of transformation methods available.

materialize data as tuple of numpy arrays
conn.streams(*UUIDs).filter(start, end).to_array()
>> (array([RawPoint(1500000000100000000, 2.0),
>> RawPoint(1500000000300000000, 4.0),
>> RawPoint(1500000000500000000, 6.0),
>> RawPoint(1500000000700000000, 8.0),
>> RawPoint(1500000000900000000, 10.0)], dtype=object),
>> array([RawPoint(1500000000000000000, 1.0),
>> RawPoint(1500000000200000000, 3.0),
>> RawPoint(1500000000400000000, 5.0),
>> RawPoint(1500000000600000000, 7.0),
>> RawPoint(1500000000800000000, 9.0)], dtype=object),
>> ...

materialize data as list of pandas Series
conn.streams(*UUIDs).filter(start, end).to_series()
>> [1500000000100000000 2.0
>> 1500000000300000000 4.0
>> 1500000000500000000 6.0
>> 1500000000700000000 8.0
>> 1500000000900000000 10.0
>> dtype: float64,
>> 1500000000000000000 1.0
>> 1500000000200000000 3.0
>> 1500000000400000000 5.0
>> 1500000000600000000 7.0
>> 1500000000800000000 9.0
>> dtype: float64,
>> ...

materialize data as pandas DataFrame
conn.streams(*UUIDs).filter(start, end).to_dataframe()
>> time sensors/stream0 sensors/stream1
>> 0 1500000000000000000 NaN 1.0
>> 1 1500000000100000000 2.0 NaN
>> 2 1500000000200000000 NaN 3.0
>> 3 1500000000300000000 4.0 NaN
>> 4 1500000000400000000 NaN 5.0
>> 5 1500000000500000000 6.0 NaN

(continues on next page)

1.4. Working with btrdb 23

btrdb-python Documentation, Release v5.32

(continued from previous page)

>> 6 1500000000600000000 NaN 7.0
>> 7 1500000000700000000 8.0 NaN
>> 8 1500000000800000000 NaN 9.0
>> 9 1500000000900000000 10.0 NaN

Serializing Data

If you would like to save your data to disk for later use or to import into another program, we have several options
available with more planned in the future.

Most serialization methods will save to disk however there is also a to_table method which produces a tabular view
of your data as a string for display or printing. Some examples are shown below.

export data and save as CSV
streams.to_csv("export.csv")

convert table of data as a string
print(streams.to_table())
>> time sensors/stream0 sensors/stream1
>> ------------------- ----------------- -----------------
>> 1500000000000000000 1
>> 1500000000100000000 2
>> 1500000000200000000 3
>> 1500000000300000000 4
>> 1500000000400000000 5
>> 1500000000500000000 6
>> 1500000000600000000 7
>> 1500000000700000000 8
>> 1500000000800000000 9
>> 1500000000900000000 10

1.4.7 Multiprocessing

Complex analytics in Python may require additional speedups that can be gained by using the Python multiprocessing
library. Other libraries like web applications take advantage of multiprocessing to serve a large number of users.
Because btrdb-python uses grpc under the hood, it is important to understand how to connect and reuse connections to
the database in a multiprocess or multithread context.

The most critical thing to note is that btrdb.Connection objects are not thread or multiprocess-safe. This means
that in your code you should use either a lock or a semaphore to share a single connection object or that each process or
thread should create their own connection object and clean up after themselves when they are done using the connection.

Let’s take the following simple example: we want to perform a data quality analysis on 12 hour chunks of data for all
the streams in our staging/sensors collection. If we have hundreds of sensor streams across many months, this job
can be sped up dramatically by using multiprocessing. Instead of having a single process churning through the each
chunk of data one at a time, several workers can process multiple data chunks simultanously using multiple CPU cores
and taking advantage of other CPU scheduling optimizations.

Consider the processing architecture shown in Fig. 1.1. At first glance, this architecture looks similar to the one used
by multiprocessing.Pool, which is true. However, consider the following code:

24 Chapter 1. User Guide

https://grpc.io/docs/tutorials/basic/python.html

btrdb-python Documentation, Release v5.32

Fig. 1.1: A two queue multiprocessing architecture for data parallel processing.

import json
import math
import btrdb
import multiprocessing as mp

from btrdb.utils.timez import ns_delta

This is just an example method
from qa import data_quality

def time_ranges(stream):
"""
Returns all 12 hour time ranges for the given stream
"""
earliest = stream.earliest()[0].time
latest = stream.latest()[0].time
hours = int(math.ceil((latest-earliest)/3.6e12))

for i in range(0, hours, 12):
start = earliest + ns_delta(hours=i)
end = start + ns_delta(hours=12)
yield start, end

def stream_quality(uuid):
"""
Connects to BTrDB and applies the data quality to 12 hour chunks
"""
Connect to DB and get the stream and version
db = btrdb.connect()
stream = db.stream_from_uuid(uuid)
version = stream.version()

(continues on next page)

1.4. Working with btrdb 25

btrdb-python Documentation, Release v5.32

(continued from previous page)

Get the data quality scores for each 12 hour chunk of data
quality = []
for start, end in time_ranges(stream):

values = stream.values(start=start, end=end, version=version)
quality.append(data_quality(values))

Return the quality scores
return json.dumps({"uuid": str(uuid), "version": version, "quality": quality})

if __name__ == "__main__":
Get the list of streams to get scores for
db = btrdb.connect()
streams = db.streams_in_collection("staging/sensors")

Create the multiprocessing pool and execute the analytic
pool = mp.Pool(processes=mp.cpu_count())

for result in pool.imap_unordered(stream_quality, [s.uuid for s in streams]):
print(result)

Let’s break this down quickly since this is a very common design pattern. First the time_ranges function gets the
earliest and latest timestamp from a stream, then returns all 12 hour intervals between those two timestamps with no
overlap. An imaginary stream_quality function takes a uuid for a stream, connects to the database and then applies
the example data_quality method to all 12 hour chunks of data using the time_ranges method, returning a JSON
string with the results.

The stream_quality function is our parallelizable function (e.g. computing the data quality for multiple streams
at a time). Depending on how long the data_quality function takes to compute, we may also want to parallelize
(stream, start, end) tuples.

If you would like features like a connection pool object (as other databases have) or multiprocessing helpers, please
leave us a note in our GitHub issues!

1.4.8 Multistream Queries

Refer to True Multistream Support.

1.4.9 Arrow-enabled Queries

In more recent deployments of the BTrDB platform (>=5.30.0), commercial customers also have access to additional
accelerated functionality for data fetching and inserting.

Also, most StreamSet based value queries (AlignedWindows, Windows, Values) are multithreaded by default. This
leads to decent performance improvements for fetching and inserting data using the standard StreamSet api without
any edits by the user. Refer to The StreamSet API

In addition to these improvements to the standard API, commercial customers also have access to additional accelerated
data fetching and inserting methods that can dramatically speed up their workflows.

26 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Apache Arrow Data Format

While keeping our standard API consistent with our Point and StatPoint python object model, we have also created
additional methods that will provide this same type of data, but in a tabular format by default. Leveraging the language-
agnostic columnar data format Arrow, we can transmit our timeseries data in a format that is already optimized for data
analytics with well-defined schemas that take the guesswork out of the data types, timezones, etc. To learn more about
these methods, please refer to the arrow_ prefixed methods for both Stream and StreamSet objects and the StreamSet
transformer methods.

True Multistream Support

Until now, there has not been a true multistream query support, our previous api and with the new edits, emulates
multistream support with StreamSet s and using multithreading. However, this will still only scale to an amount of
streams based on the amount of threads that the python threadpool logic can support.

Due to this, raw data queries for StreamSet s using our arrow api StreamSet.filter(start=X, end=Y,).
arrow_values() will now perform true multistream queries. The platform, instead of the python client, will now
quickly grab all the stream data for all streams in your streamset, and then package that back to the python client in an
arrow table! This leads to data fetch speedups on the order of 10-50x based on the amount and kind of streams.

1.4.10 Working with Dash and Plotly

From Plotly’s getting start guide: “The plotly Python library is an interactive, open-source plotting library that supports
over 40 unique chart types covering a wide range of statistical, financial, geographic, scientific, and 3-dimensional use-
cases.”

These tools are usable in jupyter notebooks and can also be ran as their own standalone apps using plotly-dash.

Below are two examples using the standard API and the Arrow enabled API to retrieve data as a pandas.DataFrame,
and then plotting the results. These examples are based off of the minimal dash app.

Non-Multistream API

from dash import Dash, html, dcc, callback, Output, Input
import plotly.express as px
import pandas as pd
import btrdb

conn = btrdb.connect()
streams = conn.streams_in_collection("YOUR_COLLECTION_HERE")
streamset = conn.streams(*[s.uuid for s in streams])
latest = streamset.latest()
end = min([pt.time for pt in latest])
start = end - btrdb.utils.timez.ns_delta(minutes=5)

df = streamset.filter(start=start, end=end).to_dataframe()

app = Dash(__name__)

app.layout = html.Div([
html.H1(children='Title of Dash App', style={'textAlign':'center'}),
dcc.Dropdown(df.columns, id='dropdown-selection'),

(continues on next page)

1.4. Working with btrdb 27

https://arrow.apache.org/
https://arrow.apache.org/
https://plotly.com/python/getting-started/
https://dash.plotly.com/minimal-app

btrdb-python Documentation, Release v5.32

(continued from previous page)

dcc.Graph(id='graph-content')
])

@callback(
Output('graph-content', 'figure'),
Input('dropdown-selection', 'value')

)
def update_graph(value):

dff = df[value]
return px.line(dff, x=dff.index, y=value)

if __name__ == '__main__':
app.run(debug=True)

Multistream API

from dash import Dash, html, dcc, callback, Output, Input
import plotly.express as px
import pandas as pd
import btrdb

conn = btrdb.connect()
streams = conn.streams_in_collection("YOUR_COLLECTION_HERE")
streamset = conn.streams(*[s.uuid for s in streams])
latest = streamset.latest()
end = min([pt.time for pt in latest])
start = end - btrdb.utils.timez.ns_delta(minutes=5)

df = streamset.filter(start=start, end=end).arrow_to_dataframe()
df = df.set_index('time')

app = Dash(__name__)

app.layout = html.Div([
html.H1(children='Title of Dash App', style={'textAlign':'center'}),
dcc.Dropdown(df.columns, id='dropdown-selection'),
dcc.Graph(id='graph-content')

])

@callback(
Output('graph-content', 'figure'),
Input('dropdown-selection', 'value')

)
def update_graph(value):

dff = df[value]
return px.line(dff, x=dff.index, y=value)

if __name__ == '__main__':
app.run(debug=True)

28 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

1.4.11 Working with Ray

To use BTrDB connection, stream and streamsets objects in the parallelization library ray, a special serializer is required.
BTrDB provides a utility function that register the serializer with ray. An example is shown below.

Setting up the ray serializer

import btrdb
import ray
from btrdb.utils.ray import register_serializer

uuids = ["b19592fc-fb71-4f61-9d49-8646d4b1c2a1",
"07b2cff3-e957-4fa9-b1b3-e14d5afb1e63"]

ray.init()

conn_params = {"profile": "profile_name"}

register serializer with the connection parameters
register_serializer(**conn_params)

conn = btrdb.connect(**conn_params)

BTrDB connection object can be passed as an argument
to a ray remote function
@ray.remote
def test_btrdb(conn):

print(conn.info())

Stream object can be passed as an argument
to a ray remote function
@ray.remote
def test_stream(stream):

print(stream.earliest())

StreamSet object can be passed as an argument
to a ray remote function
@ray.remote
def test_streamset(streamset):

print(streamset.earliest())
print(streamset)

ids = [test_btrdb.remote(conn),
test_stream.remote(conn.stream_from_uuid(uuids[0])),
test_streamset.remote(conn.streams(*uuids))]

ray.get(ids)
output of test_btrdb
>>(pid=28479) {'majorVersion': 5, 'build': '5.10.5', 'proxy': {'proxyEndpoints': []}}
output of test_stream
>>(pid=28482) (RawPoint(1533210100000000000, 0.0), 0)
output of test_streamset

(continues on next page)

1.4. Working with btrdb 29

btrdb-python Documentation, Release v5.32

(continued from previous page)

>>(pid=28481) (RawPoint(1533210100000000000, 0.0), RawPoint(1533210100000000000, 0.0))
>>(pid=28481) StreamSet with 2 streams

1.5 BTrDB Explained

The Berkeley Tree DataBase (BTrDB) is pronounced “Better DB”.

A next-gen timeseries database for dense, streaming telemetry.

Problem: Existing timeseries databases are poorly equipped for a new generation of ultra-fast sensor telemetry. Specif-
ically, millions of high-precision power meters are to be deployed through the power grid to help analyze and prevent
blackouts. Thus, new software must be built to facilitate the storage and analysis of its data.

Baseline: We need 1.4M inserts/second and 5x that in reads if we are to support 1000 micro-synchrophasors per server
node. No timeseries database can do this.

1.5.1 Summary

Goals: Develop a multi-resolution storage and query engine for many 100+ Hz streams at nanosecond precision—and
operate at the full line rate of underlying network or storage infrastructure for affordable cluster sizes (less than six).

Developed at The University of California Berkeley, BTrDB offers new ways to support the aforementioned high
throughput demands and allows efficient querying over large ranges.

Fast writes/reads

Measured on a 4-node cluster (large EC2 nodes):

• 53 million inserted values per second

• 119 million queried values per second

Fast analysis

In under 200ms, it can query a year of data at nanosecond-precision (2.1 trillion points) at any desired win-
dow—returning statistical summary points at any desired resolution (containing a min/max/mean per point).

Fig. 1.2: BTrDB enables rapid timeseries queries to support analyses that zoom from years of data to nanosecond
granularity smoothly, similar to how you might zoom into a street level view on Google Maps.

High compression

Data is compressed by 2.93x—a significant improvement for high-precision nanosecond streams. To achieve this, a
modified version of run-length encoding was created to encode the jitter of delta values rather than the delta values
themselves. Incidentally, this outperforms the popular audio codec FLAC which was the original inspiration for this
technique.

Efficient Versioning

Data is version-annotated to allow queries of data as it existed at a certain time. This allows reproducible query results
that might otherwise change due to newer realtime data coming in. Structural sharing of data between versions is done
to make this process as efficient as possible.

30 Chapter 1. User Guide

https://arxiv.org/abs/1605.02813
https://xiph.org/flac/

btrdb-python Documentation, Release v5.32

1.5.2 The Tree Structure

BTrDB stores its data in a time-partitioned tree.

All nodes represent a given time slot. A node can describe all points within its time slot at a resolution corresponding
to its depth in the tree.

The root node covers ~146 years. With a branching factor of 64, bottom nodes at ten levels down cover 4ns each.

level node width time granularity
1 262 ns ~146 years
2 256 ns ~2.28 years
3 250 ns ~13.03 days
4 244 ns ~4.88 hours
5 238 ns ~4.58 minutes
6 232 ns ~4.29 seconds
7 226 ns ~67.11 ms
8 220 ns ~1.05 ms
9 214 ns ~16.38 µs
10 28 ns 256 ns
11 22 ns 4 ns

A node starts as a vector node, storing raw points in a vector of size 1024. This is considered a leaf node, since it does
not point to any child nodes.:

VECTOR NODE
(holds 1024 raw points)

. <- raw points

Once this vector is full and more points need to be inserted into its time slot, the node is converted to a core node by
time-partitioning itself into 64 “statistical” points.:

CORE NODE
(holds 64 statistical points)

<- stat points

<- child node pointers

A statistical point represents a 1/64 slice of its parent’s time slot. It holds the min/max/mean/count of all points inside
its time slot, and points to a new node holding extra details. When a vector node is first converted to a core node, the
raw points are pushed into new vector nodes pointed to by the new statistical points.

1.5. BTrDB Explained 31

btrdb-python Documentation, Release v5.32

level node width stat point width total nodes total stat points
1 262 ns (~146 years) 256 ns (~2.28 years) 20 nodes 26 points
2 256 ns (~2.28 years) 250 ns (~13.03 days) 26 nodes 212 points
3 250 ns (~13.03 days) 244 ns (~4.88 hours) 212 nodes 218 points
4 244 ns (~4.88 hours) 238 ns (~4.58 min) 218 nodes 224 points
5 238 ns (~4.58 min) 232 ns (~4.29 s) 224 nodes 230 points
6 232 ns (~4.29 s) 226 ns (~67.11 ms) 230 nodes 236 points
7 226 ns (~67.11 ms) 220 ns (~1.05 ms) 236 nodes 242 points
8 220 ns (~1.05 ms) 214 ns (~16.38 µs) 242 nodes 248 points
9 214 ns (~16.38 µs) 28 ns (256 ns) 248 nodes 254 points
10 28 ns (256 ns) 22 ns (4 ns) 254 nodes 260 points
11 22 ns (4 ns) 260 nodes

The sampling rate of the data at different moments will determine how deep the tree will be during those slices of time.
Regardless of the depth of the actual data, the time spent querying at some higher level (lower resolution) will remain
fixed (quick) due to summaries provided by parent nodes.

. . .

1.5.3 Appendix

The original version of this page can be found at:

• github.com/PingThingsIO/btrdb-explained

This page is written based on the following sources:

• Whitepaper

• Code

1.6 API Reference

1.6.1 btrdb

Package for the btrdb database library.

btrdb.connect(conn_str=None, apikey=None, profile=None, shareable=False)
Connect to a BTrDB server.

Parameters

• conn_str (str, default=None) – The address and port of the cluster to connect
to, e.g. 192.168.1.1:4411. If set to None, will look in the environment variable
$BTRDB_ENDPOINTS (recommended).

• apikey (str, default=None) – The API key used to authenticate requests (optional). If
None, the key is looked up from the environment variable $BTRDB_API_KEY.

• profile (str, default=None) – The name of a profile containing the required connection
information as found in the user’s predictive grid credentials file ~/.predictivegrid/
credentials.yaml.

32 Chapter 1. User Guide

https://github.com/PingThingsIO/btrdb-explained
https://www.usenix.org/system/files/conference/fast16/fast16-papers-andersen.pdf
https://github.com/BTrDB/btrdb-server

btrdb-python Documentation, Release v5.32

• shareable (bool, default=False) – Whether the connection can be “shared” in a dis-
tributed setting such as Ray workers. If set to True, the connection can be serialized and sent
to other workers so that data can be retrieved in parallel; however, this is less secure because
it is possible for other users of the Ray cluster to use your API key to fetch data.

Returns
db – An instance of the BTrDB context to directly interact with the database.

Return type
BTrDB

Examples

This example looks for the env variables: BTRDB_ENDPOINTS and BTRDB_API_KEY.

>>> conn = btrdb.connect()
<btrdb.conn.BTrDB at 0x...>

Connect to the platform by looking for the relevant platform profile in ${HOME}/.predictivegrid/
credentials.yaml if the file is present.

>>> conn = btrdb.connect(profile='test')
<btrdb.conn.BTrDB at 0x...>

If you provide incorrect credentials, you will get an error.

>>> conn = btrdb.connect(conn_str="192.168.1.1:4411", apikey="NONSENSICAL_API_KEY")

1.6.2 btrdb.conn

Connection related objects for the BTrDB library

class btrdb.conn.BTrDB(endpoint)
The primary server connection object for communicating with a BTrDB server.

1.6. API Reference 33

btrdb-python Documentation, Release v5.32

Methods

collection_metadata(prefix[, auto_retry, ...]) Gives statistics about metadata for collections that
match a prefix.

create(uuid, collection[, tags, ...]) Tells BTrDB to create a new stream with UUID uuid
in collection with specified tags and annotations.

info() Returns information about the platform proxy server.
list_collections([starts_with]) Returns a list of collection paths using the starts_with

argument for filtering.
list_unique_annotations([collection]) Returns a list of annotation keys used in a given col-

lection prefix.
list_unique_names([collection]) Returns a list of names used in a given collection pre-

fix.
list_unique_units([collection]) Returns a list of units used in a given collection prefix.
query(stmt[, params, auto_retry, retries, ...]) Performs a SQL query on the database metadata and

returns a list of dictionaries from the resulting cursor.
stream_from_uuid(uuid) Creates a stream handle to the BTrDB stream with the

UUID uuid.
streams(*identifiers[, versions, ...]) Returns a StreamSet object with BTrDB streams from

the supplied identifiers.
streams_in_collection(*collection[, ...]) Search for streams matching given parameters

collection_metadata(prefix, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Gives statistics about metadata for collections that match a prefix.

Parameters

• prefix (str, required) – A prefix of the collection names to look at

• auto_retry (bool, default: False) – Whether to retry this request in the event of
an error

• retries (int, default: 5) – Number of times to retry this request if there is an error.
Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function call if
there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff in-
creases between retries. Will be ignored if auto_retry is False

Returns
A tuple of dictionaries containing metadata on the streams in the provided collection.

Return type
tuple

34 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Examples

>>> conn.collection_metadata("sunshine/PMU1")
({'name': 0, 'unit': 0, 'ingress': 0, 'distiller': 0},
.. {'foo': 1, 'impedance': 12, 'location': 12})

>>> conn.collection_metadata("sunshine/")
({'name': 0, 'unit': 0, 'ingress': 0, 'distiller': 0},
.. {'foo': 1, 'impedance': 72, 'location': 72})

create(uuid, collection, tags=None, annotations=None, auto_retry=False, retries=5, retry_delay=3,
retry_backoff=4)

Tells BTrDB to create a new stream with UUID uuid in collection with specified tags and annotations.

Parameters

• uuid (UUID, required) – The uuid of the requested stream.

• collection (str, required) – The collection string prefix that the stream will belong
to.

• tags (dict, required) – The tags-level metadata key:value pairs.

• annotations (dict, optional) – The mutable metadata of the stream, key:value pairs

• auto_retry (bool, default: False) – Whether to retry this request in the event of
an error

• retries (int, default: 5) – Number of times to retry this request if there is an error.
Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function call if
there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff in-
creases between retries. Will be ignored if auto_retry is False

Returns
instance of Stream class

Return type
Stream

Examples

>>> import btrdb
>>> from uuid import uuid4 # this generates a random uuid
>>> conn = btrdb.connect()
>>> collection = "new/stream/collection"
>>> tags = {"name":"foo", "unit":"V"}
>>> annotations = {"bar": "baz"}
>>> s = conn.create(uuid=uuid4(), tags=tags, annotations=annotations,␣
→˓collection=collection)
<Stream collection=new/stream/collection name=foo>

info()

Returns information about the platform proxy server.

1.6. API Reference 35

btrdb-python Documentation, Release v5.32

Returns
Proxy server connection and status information

Return type
dict

Examples

>>> conn = btrdb.connect()
>>> conn.info()
{
.. 'majorVersion': 5,
.. 'minorVersion': 8,
.. 'build': ...,
.. 'proxy': ...,
}

list_collections(starts_with='')
Returns a list of collection paths using the starts_with argument for filtering.

Parameters
starts_with (str, optional, default: '') – Filter collections that start with the
string provided, if none passed, will list all collections.

Returns
collections

Return type
List[str]

Examples

Assuming we have the following collections in the platform: foo, bar, foo/baz, bar/baz

>>> conn = btrdb.connect()
>>> conn.list_collections().sort()
["bar", "bar/baz", "foo", "foo/bar"]

>>> conn.list_collections(starts_with="foo")
["foo", "foo/bar"]

list_unique_annotations(collection=None)
Returns a list of annotation keys used in a given collection prefix.

Parameters
collection (str) – Prefix of the collection to filter.

Returns
annotations

Return type
list[str]

36 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Notes

This query treats the collection string as a prefix, so collection="foo" will match with the following
wildcard syntax foo%. If you only want to filter for a single collection, you will need to provide the full
collection, if there are other collections that match the foo% pattern, you might need to use a custom SQL
query using conn.query.

Examples

>>> conn.list_unique_annotations(collection="sunshine/PMU1")
['foo', 'location', 'impedance']

list_unique_names(collection=None)
Returns a list of names used in a given collection prefix.

Parameters
collection (str) – Prefix of the collection to filter.

Returns
names

Return type
list[str]

Examples

Can specify a full collection name.

>>> conn.list_unique_names(collection="sunshine/PMU1")
['C1ANG', 'C1MAG', 'C2ANG', 'C2MAG', 'C3ANG', 'C3MAG', 'L1ANG', 'L1MAG', 'L2ANG
→˓', 'L2MAG', 'L3ANG', 'L3MAG', 'LSTATE']

And also provide a collection prefix.

>>> conn.list_unique_names(collection="sunshine/")
['C1ANG', 'C1MAG', 'C2ANG', 'C2MAG', 'C3ANG', 'C3MAG', 'L1ANG', 'L1MAG', 'L2ANG
→˓', 'L2MAG', 'L3ANG', 'L3MAG', 'LSTATE']

list_unique_units(collection=None)
Returns a list of units used in a given collection prefix.

Parameters
collection (str) – Prefix of the collection to filter.

Returns
units

Return type
list[str]

1.6. API Reference 37

btrdb-python Documentation, Release v5.32

Examples

>>> conn.list_unique_units(collection="sunshine/PMU1")
['amps', 'deg', 'mask', 'volts']

query(stmt: str, params: Tuple[str] | List[str] = None, auto_retry=False, retries=5, retry_delay=3,
retry_backoff=4)

Performs a SQL query on the database metadata and returns a list of dictionaries from the resulting cursor.

Parameters

• stmt (str) – a SQL statement to be executed on the BTrDB metadata. Available tables
are noted below. To sanitize inputs use a $1 style parameter such as select * from streams
where name = $1 or name = $2.

• params (list or tuple) – a list of parameter values to be sanitized and interpolated into
the SQL statement. Using parameters forces value/type checking and is considered a best
practice at the very least.

• auto_retry (bool, default: False) – Whether to retry this request in the event of
an error

• retries (int, default: 5) – Number of times to retry this request if there is an error.
Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function call if
there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff in-
creases between retries. Will be ignored if auto_retry is False

Returns
a list of dictionary object representing the cursor results.

Return type
list

Notes

Parameters will be inserted into the SQL statement as noted by the parameter number such as $1, $2, or $3.
The streams table is available for SELECT statements only.

See https://btrdb.readthedocs.io/en/latest/ for more info.

The following are the queryable columns in the postgres streams table.

Column Type Nullable
uuid uuid not null
collection character varying(256) not null
name character varying(256) not null
unit character varying(256) not null
ingress character varying(256) not null
property_version bigint not null
annotations hstore

38 Chapter 1. User Guide

https://btrdb.readthedocs.io/en/latest/

btrdb-python Documentation, Release v5.32

Examples

Count all streams in the platform.

>>> conn = btrdb.connect()
>>> conn.query("SELECT COUNT(uuid) FROM streams")
[{'count': ...}]

Count all streams in the collection foo/bar by passing in the variable as a parameter.

>>> conn.query("SELECT COUNT(uuid) FROM streams WHERE collection=$1::text",␣
→˓params=["foo/bar"])
[{'count': ...}]

Count all streams in the platform that has a non-null entry for the metadata annotation foo.

>>> conn.query("SELECT COUNT(uuid) FROM streams WHERE annotations->$1::text IS␣
→˓NOT NULL", params=["foo"])
[{'count': ...}]

stream_from_uuid(uuid)
Creates a stream handle to the BTrDB stream with the UUID uuid. This method does not check whether
a stream with the specified UUID exists. It is always good form to check whether the stream existed using
stream.exists().

Parameters
uuid (UUID) – The uuid of the requested stream.

Returns
instance of Stream class or None

Return type
Stream

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> uuid = "f98f4b4e-9fab-46b5-8a80-f282059d69b1"
>>> stream = conn.stream_from_uuid(uuid)
>>> stream
<Stream collection=foo/test name=test_stream>

streams(*identifiers, versions=None, is_collection_prefix=False)
Returns a StreamSet object with BTrDB streams from the supplied identifiers. If any streams cannot be
found matching the identifier then a StreamNotFoundError will be returned.

Parameters

• identifiers (str or UUID) – a single item or iterable of items which can be used to
query for streams. Identifiers are expected to be UUID as string, UUID as UUID, or col-
lection/name string.

• versions (list[int]) – a single or iterable of version numbers to match the identifiers

1.6. API Reference 39

btrdb-python Documentation, Release v5.32

• is_collection_prefix (bool, default=False) – If providing a collection string, is
that string just a prefix, or the entire collection name? This will impact how many streams
are returned.

Returns
Collection of streams.

Return type
StreamSet

Examples

With a sequence of uuids.

>>> conn = btrdb.connect()
>>> conn.streams(identifiers=list_of_uuids)
<btrdb.stream.StreamSet at 0x...>

With a sequence of uuids and version numbers. Here we are using version 0 to use the latest data points.

>>> conn.streams(identifiers=list_of_uuids, versions=[0 for _ in list_of_uuids])
<btrdb.stream.StreamSet at 0x...>

Filtering by collection prefix "foo" where multiple collections exist like the following: foo/bar, foo/
baz, foo/bar/new, and foo. If we set is_collection_prefix` to True, this will return all streams that exist
in the collections defined above. It is similar to a regex pattern ^foo.* for matching purposes.

>>> conn.streams(identifiers="foo", is_collection_prefix=True)
<btrdb.stream.StreamSet at 0x...>

If you set is_collection_prefix to False, this will assume that the string identifier you provide is the
full collection name. Matching like the regex here: ^foo

>>> conn.streams(identifiers="foo", is_collection_prefix=False)
<btrdb.stream.StreamSet at 0x...>

streams_in_collection(*collection, is_collection_prefix=True, tags=None, annotations=None,
auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)

Search for streams matching given parameters

This function allows for searching

Parameters

• collection (str) – collections to use when searching for streams, case sensitive.

• is_collection_prefix (bool) – Whether the collection is a prefix.

• tags (Dict[str, str]) – The tags to identify the stream.

• annotations (Dict[str, str]) – The annotations to identify the stream.

• auto_retry (bool, default: False) – Whether to retry this request in the event of
an error

• retries (int, default: 5) – Number of times to retry this request if there is an error.
Will be ignored if auto_retry is False

40 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

• retry_delay (int, default: 3) – initial time to wait before retrying function call if
there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff in-
creases between retries. Will be ignored if auto_retry is False

Returns
A list of Stream objects found with the provided search arguments.

Return type
list[Stream]

Note: In a future release, the default return value of this function will be a StreamSet

Examples

>>> conn = btrdb.connect()
>>> conn.streams_in_collection(collection="foo", is_collection_prefix=True)
[<Stream collection=foo name=test1>, <Stream collection=foo name=test2,
... <Stream collection=foo/bar, name=testX>, <Stream collection=foo/baz/bar␣
→˓name=testY>]

>>> conn.streams_in_collection(collection="foo", is_collection_prefix=False)
[<Stream collection=foo, name=test1>, <Stream collection=foo, name=test2>]

>>> conn.streams_in_collection(collection="foo",
... is_collection_prefix=False, tags={"unit":"Volts"})
[<Stream collection=foo, name=test1>]

>>> conn.streams_in_collection(collection="foo",
... is_collection_prefix=False, tags={"unit":"UNKNOWN"})
[]

1.6.3 btrdb.stream

Module for Stream and related classes

class btrdb.stream.Stream(btrdb, uuid, **db_values)
An object that represents a specific time series stream in the BTrDB database.

Parameters

• btrdb (BTrDB) – A reference to the BTrDB object connecting this stream back to the physical
server.

• uuid (UUID) – The unique UUID identifier for this stream.

• db_values (kwargs) – Framework only initialization arguments. Not for developer use.

Attributes

btrdb
Returns the stream’s BTrDB object.

1.6. API Reference 41

btrdb-python Documentation, Release v5.32

collection
Returns the collection of the stream.

name
Returns the stream’s name which is parsed from the stream tags.

unit
Returns the stream’s unit which is parsed from the stream tags.

uuid
Returns the stream’s UUID.

Methods

aligned_windows(start, end, pointwidth[, ...]) Read statistical aggregates of windows of data from
BTrDB.

annotations([refresh, auto_retry, retries, ...]) Returns a stream's annotations
arrow_aligned_windows(start, end, pointwidth) Read statistical aggregates of windows of data from

BTrDB.
arrow_insert(data[, merge]) Insert new data in the form of a pyarrow Table with

(time, value) columns.
arrow_values(start, end[, version, ...]) Read raw values from BTrDB between time [a, b) in

nanoseconds.
arrow_windows(start, end, width[, version, ...]) Read arbitrarily-sized windows of data from BTrDB.
count([start, end, pointwidth, precise, version]) Compute the total number of points in the stream
current([version, auto_retry, retries, ...]) Returns the point that is closest to the current times-

tamp, e.g. the latest point in the stream up until now.
delete(start, end[, auto_retry, retries, ...]) "Delete" all points between [start, end)
earliest([version, auto_retry, retries, ...]) Returns the first point of data in the stream.
exists() Check if stream exists
flush ([auto_retry, retries, retry_delay, ...]) Flush writes the stream buffers out to persistent stor-

age.
insert(data[, merge]) Insert new data in the form (time, value) into the se-

ries.
latest([version, auto_retry, retries, ...]) Returns last point of data in the stream.
nearest(time, version[, backward, ...]) Finds the closest point in the stream to a specified

time.
obliterate([auto_retry, retries, ...]) Obliterate deletes a stream from the BTrDB server.
refresh_metadata() Refreshes the locally cached metadata for a stream

from the server.
tags([refresh, auto_retry, retries, ...]) Returns the stream's tags.
update([tags, annotations, collection, ...]) Updates metadata including tags, annotations, and

collection as an UPSERT operation.
values(start, end[, version, auto_retry, ...]) Read raw values from BTrDB between time [a, b) in

nanoseconds.
version([auto_retry, retries, retry_delay, ...]) Returns the current data version of the stream.
windows(start, end, width[, depth, version, ...]) Read arbitrarily-sized windows of data from BTrDB.

aligned_windows(start, end, pointwidth, version=0, auto_retry=False, retries=5, retry_delay=3,
retry_backoff=4)

Read statistical aggregates of windows of data from BTrDB.

Query BTrDB for aggregates (or roll ups or windows) of the time series with version between time start
(inclusive) and end (exclusive) in nanoseconds. Each point returned is a statistical aggregate of all the

42 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

raw data within a window of width 2**pointwidth nanoseconds. These statistical aggregates currently
include the mean, minimum, and maximum of the data and the count of data points composing the window.

start is inclusive, but end is exclusive. That is, results will be returned for all windows that start in the
interval [start, end). If end < start+2^pointwidth you will not get any results. If start and end are not powers
of two, the bottom pointwidth bits will be cleared. Each window will contain statistical summaries of
the window. Statistical points with count == 0 will be omitted.

Parameters

• start (int or datetime like object) – The start time in nanoseconds for the range
to be queried. (see btrdb.utils.timez.to_nanoseconds() for valid input types)

• end (int or datetime like object) – The end time in nanoseconds for the range to
be queried. (see btrdb.utils.timez.to_nanoseconds() for valid input types)

• pointwidth (int) – Specify the number of ns between data points (2**pointwidth)

• version (int) – Version of the stream to query

• auto_retry (bool, default: False) – Whether to retry this request in the event of
an error

• retries (int, default: 5) – Number of times to retry this request if there is an error.
Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function call if
there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff in-
creases between retries. Will be ignored if auto_retry is False

Returns
Returns a tuple containing windows of data. Each window is a tuple containing data tuples.
Each data tuple contains a StatPoint and the stream version.

Return type
tuple

Note: As the window-width is a power-of-two, it aligns with BTrDB internal tree data structure and is
faster to execute than windows().

annotations(refresh=False, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Returns a stream’s annotations

Annotations returns the annotations of the stream (and the annotation version).

Do not modify the resulting map.

Parameters

• refresh (bool, default: False) – Indicates whether a round trip to the server
should be implemented regardless of whether there is a local copy.

• auto_retry (bool, default: False) – Whether to retry this request in the event of
an error

• retries (int, default: 5) – Number of times to retry this request if there is an error.
Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function call if
there is an error. Will be ignored if auto_retry is False

1.6. API Reference 43

btrdb-python Documentation, Release v5.32

• retry_backoff (int, default: 4) – Exponential factor by which the backoff in-
creases between retries. Will be ignored if auto_retry is False

Returns
A tuple containing a dictionary of annotations and an integer representing the version of the
metadata (tuple(dict, int)).

Return type
tuple

Note: This version is not the same as the stream.version.

Examples

Accessing a streams annotations.

>>> stream.annotations()
({"foo":"bar", "baz":"bazaar"}, 231)

Extract the version and metadata separately.

>>> annotations, metadata_version = stream.annotations()
>>> annotations
{"foo":"bar", "baz":"bazaar"}
>>> metadata_version
231

arrow_aligned_windows(start: int, end: int, pointwidth: int, version: int = 0, auto_retry=False, retries=5,
retry_delay=3, retry_backoff=4)→ Table

Read statistical aggregates of windows of data from BTrDB.

Query BTrDB for aggregates (or roll ups or windows) of the time series with version between time start
(inclusive) and end (exclusive) in nanoseconds [start, end). Each point returned is a statistical aggregate
of all the raw data within a window of width 2**`pointwidth` nanoseconds. These statistical aggregates
currently include the mean, minimum, and maximum of the data and the count of data points composing
the window.

Note: start is inclusive, but end is exclusive. That is, results will be returned for all windows that
start in the interval [start, end). If end < start+2^pointwidth you will not get any results. If start and end
are not powers of two, the bottom pointwidth bits will be cleared. Each window will contain statistical
summaries of the window. Statistical points with count == 0 will be omitted.

Parameters

• start (int or datetime like object, required) – The start time in nanoseconds
for the range to be queried. (see :func:btrdb.utils.timez.to_nanoseconds for valid
input types)

• end (int or datetime like object, required) – The end time in nanoseconds for
the range to be queried. (see :func:btrdb.utils.timez.to_nanoseconds for valid in-
put types)

44 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

• pointwidth (int, required) – Specify the number of ns between data points
(2**pointwidth)

• version (int, default: 0) – Version of the stream to query

• auto_retry (bool, default: False) – Whether to retry this request in the event of
an error

• retries (int, default: 5) – Number of times to retry this request if there is an error.
Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function call if
there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff in-
creases between retries. Will be ignored if auto_retry is False

Returns
Returns a pyarrow table containing the windows of data.

Return type
pyarrow.Table

Note: As the window-width is a power-of-two, it aligns with BTrDB internal tree data structure and is
faster to execute than windows().

Note: This method is available for commercial customers with arrow-enabled servers.

arrow_insert(data: Table, merge: str = 'never')→ int
Insert new data in the form of a pyarrow Table with (time, value) columns.

Inserts a table of new (time, value) columns into the stream. The values in the table need not be sorted
by time. If the arrays are larger than appropriate, this function will automatically chunk the inserts. As a
consequence, the insert is not necessarily atomic, but can be used with a very large array.

Parameters

• data (pyarrow.Table, required) – A pyarrow table with a schema of
time:Timestamp[ns, tz=UTC], value:float64 This schema will be validated and con-
verted if necessary.

• merge (str) –

A string describing the merge policy. Valid policies are:

– ’never’: the default, no points are merged

– ’equal’: points are deduplicated if the time and value are equal

– ’retain’: if two points have the same timestamp, the old one is kept

– ’replace’: if two points have the same timestamp, the new one is kept

Returns
The version of the stream after inserting new points.

Return type
int

1.6. API Reference 45

btrdb-python Documentation, Release v5.32

Note: This method is available for commercial customers with arrow-enabled servers.

Examples

Assuming we have a sequence of times and values where times are in nanoseconds. Insert the data as
a pyarrow table, and if there are duplicate timestamps already in the database, replace with the new ones in
payload.

>>> conn = btrdb.connect()
>>> import pyarrow as pa
>>> for t, v in zip(times, vals):
... print(t,v)
1500000000000000000 1.0
1500000000100000000 2.0
1500000000200000000 3.0
1500000000300000000 4.0
1500000000400000000 5.0
1500000000500000000 6.0
1500000000600000000 7.0
1500000000700000000 8.0
1500000000800000000 9.0
1500000000900000000 10.0
>>> schema = pa.schema(
... [
... pa.field("time", pa.timestamp("ns", tz="UTC"), nullable=False),
... pa.field("value", pa.float64(), nullable=False),
...]
...)
>>> payload = pa.Table.from_arrays([times, vals], schema=schema)
>>> version = stream.arrow_insert(payload, merge="replace")

arrow_values(start, end, version: int = 0, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4,
schema=None)→ Table

Read raw values from BTrDB between time [a, b) in nanoseconds.

RawValues queries BTrDB for the raw time series data points between start and end time, both in nanosec-
onds since the Epoch for the specified stream version.

start
[int or datetime like object] The start time in nanoseconds for the range to be queried. (see btrdb.
utils.timez.to_nanoseconds() for valid input types)

end
[int or datetime like object] The end time in nanoseconds for the range to be queried. (see btrdb.
utils.timez.to_nanoseconds() for valid input types)

version: int, default: 0
The version of the stream to be queried

schema: pyarrow.Schema
Optional arrow schema the server will cast the returned data to before sending it over the network.
You can use this to change the timestamp format, column names or data sizes.

46 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

auto_retry: bool, default: False
Whether to retry this request in the event of an error

retries: int, default: 5
Number of times to retry this request if there is an error. Will be ignored if auto_retry is False

retry_delay: int, default: 3
initial time to wait before retrying function call if there is an error. Will be ignored if auto_retry is
False

retry_backoff: int, default: 4
Exponential factor by which the backoff increases between retries. Will be ignored if auto_retry is
False

Returns
A pyarrow table of the raw values with time and value columns.

Return type
pyarrow.Table

Note: Note that the raw data points are the original values at the sensor’s native sampling rate (assuming
the time series represents measurements from a sensor). This is the lowest level of data with the finest time
granularity. In the tree data structure of BTrDB, this data is stored in the vector nodes.

Note: This method is available for commercial customers with arrow-enabled servers.

arrow_windows(start: int, end: int, width: int, version: int = 0, auto_retry=False, retries=5, retry_delay=3,
retry_backoff=4)→ Table

Read arbitrarily-sized windows of data from BTrDB.

Parameters

• start (int or datetime like object, required) – The start time in nanosec-
onds for the range to be queried. (see btrdb.utils.timez.to_nanoseconds() for
valid input types)

• end (int or datetime like object, required) – The end time in nanosec-
onds for the range to be queried. (see btrdb.utils.timez.to_nanoseconds() for
valid input types)

• width (int, required) – The number of nanoseconds in each window.

• version (int, default=0, optional) – The version of the stream to query.

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
Returns a pyarrow Table containing windows of data.

1.6. API Reference 47

btrdb-python Documentation, Release v5.32

Return type
pyarrow.Table

Note: windows returns arbitrary precision windows from BTrDB. It is slower than aligned_windows,
but still significantly faster than RawValues. Each returned window will be width nanoseconds long.
start is inclusive, but end is exclusive (e.g if end < start+width you will get no results). That is, results
will be returned for all windows that start at a time less than the end timestamp. If (end - start) is not a
multiple of width, then end will be decreased to the greatest value less than end such that (end - start)
is a multiple of width (i.e., we set end = start + width * floordiv(end - start, width). The
depth parameter previously available has been deprecated. The only valid value for depth is now 0.

Note: This method is available for commercial customers with arrow-enabled servers.

property btrdb

Returns the stream’s BTrDB object.

Parameters

None

Returns

BTrDB
The BTrDB database object.

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream = conn.stream_from_uuid("...")
>>> btrdb_obj = stream.btrdb
>>> btrdb_obj
<btrdb.conn.BTrDB object at 0x...>

property collection

Returns the collection of the stream. It may require a round trip to the server depending on how the stream
was acquired.

Parameters
None

Returns
the collection of the stream

Return type
str

48 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream = conn.stream_from_uuid("...")
>>> stream.collection
'foo/bar'

count(start=-1152921504606846976, end=3458764513820540927, pointwidth=62, precise=False,
version=0)

Compute the total number of points in the stream

Counts the number of points in the specified window and version. By default, returns the latest total count
of points in the stream.

Parameters

• start (int or datetime like object, default: MINIMUM_TIME) – The
start time in nanoseconds for the range to be queried. (see btrdb.utils.timez.
to_nanoseconds() for valid input types)

• end (int or datetime like object, default: MAXIMUM_TIME) – The end
time in nanoseconds for the range to be queried. (see btrdb.utils.timez.
to_nanoseconds() for valid input types)

• pointwidth (int, default: 62) – Specify the number of ns between data points
(2**pointwidth). If the value is too large for the time window than the next smallest,
appropriate pointwidth will be used.

• precise (bool, default: False) – Forces the use of a windows query instead
of aligned_windows to determine exact count down to the nanosecond. This will be
some amount slower than the aligned_windows version.

• version (int, default: 0) – Version of the stream to query

Returns
The total number of points in the stream for the specified window.

Return type
int

Note: This helper method sums the counts of all StatPoints returned by aligned_windows. Because
of this, note that the start and end timestamps may be adjusted if they are not powers of 2. For smaller
windows of time, you may also need to adjust the pointwidth to ensure that the count granularity is
captured appropriately.

Alternatively you can set the precise argument to True which will give an exact count to the nanosecond
but may be slower to execute.

1.6. API Reference 49

btrdb-python Documentation, Release v5.32

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream = conn.stream_from_uuid("...")
>>> stream.count()
1234
>>> stream.count(start=1500000000000000000, end=1603680000000000000,␣
→˓pointwidth=55)
567
>>> stream.count(start=1500000000000000000, end=1603680000000000000,␣
→˓precise=True)
789

current(version=0, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Returns the point that is closest to the current timestamp, e.g. the latest point in the stream up until now.
Note that no future values will be returned. Returns None if errors occur during lookup or there are no
values before now.

Parameters

• version (int, default: 0) – Specify the version of the stream to query; if zero,
queries the latest stream state rather than pinning to a version.

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
The last data point in the stream up until now and the version of the stream the value was
retrieved at (tuple(RawPoint, int)).

Return type
tuple

delete(start, end, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
“Delete” all points between [start, end)

“Delete” all points between start (inclusive) and end (exclusive), both in nanoseconds.

Note: As BTrDB has persistent multiversioning, the deleted points will still exist as part of an older version
of the stream.

Parameters

• start (int or datetime like object) – The start time in nanoseconds for the
range to be deleted. (see :func:btrdb.utils.timez.to_nanoseconds for valid in-
put types)

50 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

• end (int or datetime like object) – The end time in nanoseconds for the range
to be deleted. (see :func:btrdb.utils.timez.to_nanoseconds for valid input
types)

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
The version of the new stream created

Return type
int

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream = conn.stream_from_uuid("...")
>>> start = 1500000000000000000
>>> end = 1500000001000000000
>>> stream.delete(start, end)
1234
>>> stream.count(start=start, end=end)
0

earliest(version=0, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Returns the first point of data in the stream. Returns None if error encountered during lookup or no values
in stream.

Parameters

• version (int, default: 0) – Specify the version of the stream to query; if zero,
queries the latest stream state rather than pinning to a version.

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
The first data point in the stream and the version of the stream the value was retrieved at
(tuple(RawPoint, int)).

1.6. API Reference 51

btrdb-python Documentation, Release v5.32

Return type
tuple

Examples

Get the earliest point for a stream using version 0.

>>> stream.earliest(version=0)
(<btrdb.point.RawPoint at 0x...>, 1234567)

Extract just the RawPoint data.

>>> pt, _ = stream.earliest(version=0)
>>> print(pt.time, pt.value)
1547241923338098176 123.7

exists()

Check if stream exists

Exists returns true if the stream exists. This is essential after using StreamFromUUID as the stream may not
exist, causing a 404 error on later stream operations. Any operation that returns a stream from collection
and tags will have ensured the stream exists already.

Parameters
None

Returns
Indicates whether stream is extant in the BTrDB server.

Return type
bool

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream = conn.stream_from_uuid("...")
>>> stream.uuid
UUID('...')
>>> stream.exists()
True

flush(auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Flush writes the stream buffers out to persistent storage.

Parameters

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

52 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

insert(data, merge='never')
Insert new data in the form (time, value) into the series.

Inserts a list of new (time, value) tuples into the series. The tuples in the list need not be sorted by time. If
the arrays are larger than appropriate, this function will automatically chunk the inserts. As a consequence,
the insert is not necessarily atomic, but can be used with a very large array.

Parameters

• data (list[tuple[int, float]]) – A list of tuples in which each tuple contains
a time (int) and value (float) for insertion to the database

• merge (str) –

A string describing the merge policy. Valid policies are:

– ’never’: the default, no points are merged

– ’equal’: points are deduplicated if the time and value are equal

– ’retain’: if two points have the same timestamp, the old one is kept

– ’replace’: if two points have the same timestamp, the new one is kept

Returns
The version of the stream after inserting new points.

Return type
int

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream = conn.stream_from_uuid("...")
>>> data = [(1500000000000000000, 1.0), (1500000000100000000, 2.0)]
>>> stream.insert(data)
1234
>>> stream.insert(data, merge="replace")
1235

latest(version=0, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Returns last point of data in the stream. Returns None if error encountered during lookup or no values in
stream.

Parameters

• version (int, default: 0) – Specify the version of the stream to query; if zero,
queries the latest stream state rather than pinning to a version.

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

1.6. API Reference 53

btrdb-python Documentation, Release v5.32

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
The last data point in the stream and the version of the stream the value was retrieved at
(tuple(RawPoint, int)).

Return type
tuple

Examples

Get the latest point for a stream using version 0.

>>> stream.latest(version=0)
(<btrdb.point.RawPoint at 0x...>, 1234567)

Extract just the RawPoint data.

>>> pt, _ = stream.latest(version=0)
>>> print(pt.time, pt.value)
1547241923338098176 123.7

property name

Returns the stream’s name which is parsed from the stream tags. This may require a round trip to the server
depending on how the stream was acquired.

Returns
The name of the stream.

Return type
str

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream = conn.stream_from_uuid("...")
>>> stream.name
'foo'

nearest(time, version, backward=False, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Finds the closest point in the stream to a specified time.

Return the point nearest to the specified time in nanoseconds since Epoch in the stream with version
while specifying whether to search forward or backward in time. If backward is false, the returned point
will be >= time. If backward is true, the returned point will be < time. The version of the stream
used to satisfy the query is returned.

Parameters

• time (int or datetime like object) – The time (in nanoseconds since Epoch)
to search near (see :func:btrdb.utils.timez.to_nanoseconds for valid input
types)

• version (int) – Version of the stream to use in search

54 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

• backward (boolean) – True to search backwards from time, else false for forward

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
The closest data point in the stream and the version of the stream the value was retrieved
at (tuple(RawPoint, int)).

Return type
tuple

obliterate(auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Obliterate deletes a stream from the BTrDB server. An exception will be raised if the stream could not be
found.

Parameters

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Raises
BTrDBError [404] stream does not exist – The stream could not be found in
BTrDB

refresh_metadata()

Refreshes the locally cached metadata for a stream from the server.

Queries the BTrDB server for all stream metadata including collection, annotation, and tags. This method
requires a round trip to the server.

tags(refresh=False, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Returns the stream’s tags.

Tags returns the tags of the stream. It may require a round trip to the server depending on how the stream
was acquired.

Parameters

• refresh (bool, default: False) – Indicates whether a round trip to the server
should be implemented regardless of whether there is a local copy.

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

1.6. API Reference 55

btrdb-python Documentation, Release v5.32

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
A dictionary containing the tags.

Return type
dict

property unit

Returns the stream’s unit which is parsed from the stream tags. This may require a round trip to the server
depending on how the stream was acquired.

Returns
The unit for values of the stream.

Return type
str

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream = conn.stream_from_uuid("...")
>>> stream.unit
'volts'

update(tags=None, annotations=None, collection=None, encoder=<class
'btrdb.utils.conversion.AnnotationEncoder'>, replace=False, auto_retry=False, retries=5,
retry_delay=3, retry_backoff=4)

Updates metadata including tags, annotations, and collection as an UPSERT operation.

By default, the update will only affect the keys and values in the specified tags and annotations dictionaries,
inserting them if they don’t exist, or updating the value for the key if it does exist. If any of the update
arguments (i.e. tags, annotations, collection) are None, they will remain unchanged in the database.

To delete either tags or annotations, you must specify exactly which keys and values you want set for the
field and set replace=True.

This ensures that all the keys and values for the annotations are preserved except for the key to be deleted.

Parameters

• tags (dict, optional) – Specify the tag key/value pairs as a dictionary to upsert
or replace. If None, the tags will remain unchanged in the database.

• annotations (dict, optional) – Specify the annotations key/value pairs as a dic-
tionary to upsert or replace. If None, the annotations will remain unchanged in the
database.

• collection (str, optional) – Specify a new collection for the stream. If None,
the collection will remain unchanged.

56 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

• encoder (json.JSONEncoder or None) – JSON encoder class to use for annotation
serialization. Set to None to prevent JSON encoding of the annotations.

• replace (bool, default: False) – Replace all annotations or tags with the spec-
ified dictionaries instead of performing the normal upsert operation. Specifying True
is the only way to remove annotation keys.

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
The version of the metadata (separate from the version of the data) also known as the
“property version”.

Return type
int

Examples

>>> annotations, _ = stream.anotations()
>>> del annotations["key_to_delete"]
>>> stream.update(annotations=annotations, replace=True)
12345
>>> annotations, _ = stream.annotations()
>>> "key_to_delete" in annotations
False

property uuid

Returns the stream’s UUID. The stream may or may not exist yet, depending on how the stream object was
obtained.

Returns
The unique identifier of the stream.

Return type
UUID

See also:

stream.exists

values(start, end, version=0, auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Read raw values from BTrDB between time [a, b) in nanoseconds.

RawValues queries BTrDB for the raw time series data points between start and end time, both in nanosec-
onds since the Epoch for the specified stream version.

Parameters

1.6. API Reference 57

btrdb-python Documentation, Release v5.32

• start (int or datetime like object) – The start time in nanoseconds for the
range to be queried. (see btrdb.utils.timez.to_nanoseconds() for valid input
types)

• end (int or datetime like object) – The end time in nanoseconds for the range
to be queried. (see btrdb.utils.timez.to_nanoseconds() for valid input types)

• version (int) – The version of the stream to be queried

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
Returns a list of tuples containing a RawPoint and the stream version
(list(tuple(RawPoint,int))).

Return type
list

Note: Note that the raw data points are the original values at the sensor’s native sampling rate (assuming
the time series represents measurements from a sensor). This is the lowest level of data with the finest time
granularity. In the tree data structure of BTrDB, this data is stored in the vector nodes.

version(auto_retry=False, retries=5, retry_delay=3, retry_backoff=4)
Returns the current data version of the stream.

Warning: Version returns the current data version of the stream. This is not cached, it queries each
time. Take care that you do not introduce races in your code by assuming this function will always
return the same value.

Parameters

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
The version of the stream.

Return type
int

58 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

windows(start, end, width, depth=0, version=0, auto_retry=False, retries=5, retry_delay=3,
retry_backoff=4)

Read arbitrarily-sized windows of data from BTrDB. StatPoint objects will be returned representing the
data for each window.

Parameters

• start (int or datetime like object) – The start time in nanoseconds for the
range to be queried. (see btrdb.utils.timez.to_nanoseconds() for valid input
types)

• end (int or datetime like object) – The end time in nanoseconds for the range
to be queried. (see btrdb.utils.timez.to_nanoseconds() for valid input types)

• width (int) – The number of nanoseconds in each window.

• version (int) – The version of the stream to query.

• auto_retry (bool, default: False) – Whether to retry this request in the event
of an error

• retries (int, default: 5) – Number of times to retry this request if there is an
error. Will be ignored if auto_retry is False

• retry_delay (int, default: 3) – initial time to wait before retrying function
call if there is an error. Will be ignored if auto_retry is False

• retry_backoff (int, default: 4) – Exponential factor by which the backoff
increases between retries. Will be ignored if auto_retry is False

Returns
Returns a tuple containing windows of data. Each window is a tuple containing data tuples.
Each data tuple contains a StatPoint and the stream version (tuple(tuple(StatPoint, int),
. . .)).

Return type
tuple

Note: windows returns arbitrary precision windows from BTrDB. It is slower than aligned_windows,
but can be significantly faster than raw value queries (values). Each returned window will be width
nanoseconds long. start is inclusive, but end is exclusive (e.g if end < start+width you will get no
results). That is, results will be returned for all windows that start at a time less than the end timestamp. If
(end - start) is not a multiple of width, then end will be decreased to the greatest value less than end
such that (end - start) is a multiple of width (i.e., we set end = start + width * floordiv(end
- start, width). The depth parameter previously available has been deprecated. The only valid value
for depth is now 0.

class btrdb.stream.StreamSet(streams: List[Stream])
Bases: StreamSetBase, StreamSetTransformer

Public class for a collection of streams

Attributes

allow_window

1.6. API Reference 59

btrdb-python Documentation, Release v5.32

60 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Methods

aligned_windows(pointwidth) Stores the request for an aligned windowing operation
when the query is eventually materialized.

arrow_insert(data_map[, merge]) Insert new data in the form (time, value) into their
mapped streams using pyarrow tables.

arrow_to_arrow_table() Return a pyarrow table of data.
arrow_to_dataframe([agg, name_callable]) Returns a Pandas DataFrame object indexed by time

and using the values of a stream for each column.
arrow_to_dict([agg, name_callable]) Returns a list of dicts for each time code with the ap-

propriate stream data attached.
arrow_to_numpy([agg]) Return a multidimensional array in the numpy format.
arrow_to_polars([agg, name_callable]) Returns a Polars DataFrame object with time as a col-

umn and the values of a stream for each additional
column from an arrow table.

arrow_to_series([agg, name_callable]) Returns a list of Pandas Series objects indexed by
time

arrow_values() Return a pyarrow table of stream values based on the
streamset parameters.

clone() Returns a deep copy of the object.
count([precise]) Compute the total number of points in the streams

using filters.
current() Returns the points of data in the streams closest to the

current timestamp.
earliest() Returns earliest points of data in streams using avail-

able filters.
filter([start, end, collection, name, unit, ...]) Provides a new StreamSet instance containing stored

query parameters and stream objects that match fil-
tering criteria.

index(value, [start, [stop]]) Raises ValueError if the value is not present.
insert(data_map[, merge]) Insert new data in the form (time, value) into their

mapped streams.
latest() Returns latest points of data in the streams using

available filters.
pin_versions([versions]) Saves the stream versions that future materializations

should use.
rows() Returns a materialized list of tuples where each tuple

contains the points from each stream at a unique time.
to_array([agg]) Returns a multidimensional numpy array (similar to

a list of lists) containing point classes.
to_csv(fobj[, dialect, fieldnames, agg, ...]) Saves stream data as a CSV file.
to_dataframe([agg, name_callable]) Returns a Pandas DataFrame object indexed by time

and using the values of a stream for each column.
to_dict([agg, name_callable]) Returns a list of OrderedDict for each time code with

the appropriate stream data attached.
to_polars([agg, name_callable]) Returns a Polars DataFrame object with time as a col-

umn and the values of a stream for each additional
column.

to_series([datetime64_index, agg,
name_callable])

Returns a list of Pandas Series objects indexed by
time

to_table([agg, name_callable]) Returns string representation of the data in tabular
form using the tabulate library.

values() Returns a fully materialized list of lists for the stream
values/points

values_iter() Must return context object which would then close
server cursor on __exit__

versions() Returns a dict of the stream versions.
windows(width[, depth]) Stores the request for a windowing operation when

the query is eventually materialized.

1.6. API Reference 61

btrdb-python Documentation, Release v5.32

aligned_windows(pointwidth)
Stores the request for an aligned windowing operation when the query is eventually materialized.

Parameters
pointwidth (int) – The length of each returned window as computed by 2^pointwidth.

Returns
Returns self

Return type
StreamSet

Note: aligned_windows reads power-of-two aligned windows from BTrDB. It is faster than windows().
Each returned window will be 2^``pointwidth`` nanoseconds long, beginning at start. Note that start is
inclusive, but end is exclusive. That is, results will be returned for all windows that start in the interval
[start, end). If end < start``+2^``pointwidth you will not get any results. If start and end
are not powers of two, the bottom pointwidth bits will be cleared. Each window will contain statistical
summaries of the window. Statistical points with count == 0 will be omitted.

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream1 = conn.stream_from_uuid("...")
>>> stream2 = conn.stream_from_uuid("...")
>>> streamset = btrdb.stream.StreamSet([stream1, stream2])
>>> streamset.aligned_windows(pointwidth=30)
<StreamSet ...>
>>> streamset.windows(width=1000000000)
Traceback (most recent call last):
...

btrdb.exceptions.InvalidOperation: A window operation is already requested

arrow_insert(data_map: dict, merge: str = 'never')→ dict
Insert new data in the form (time, value) into their mapped streams using pyarrow tables.

The times in the arrow table need not be sorted by time. If the point counts are larger than appropriate,
this function will automatically chunk the inserts. As a consequence, the insert is not necessarily atomic,
but can be used with a very large array.

Parameters

• data_map (dict[uuid, pyarrow.Table]) – A dictionary keyed on stream uuids
and mapped to pyarrow tables with a schema of time:Timestamp[ns, tz=UTC],
value:float64. This schema will be validated and converted if necessary.

• merge (str) –

A string describing the merge policy. Valid policies are:

– ’never’: the default, no points are merged

– ’equal’: points are deduplicated if the time and value are equal

– ’retain’: if two points have the same timestamp, the old one is kept

– ’replace’: if two points have the same timestamp, the new one is kept

62 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

Notes

BTrDB expects datetimes to be in UTC+0.

This method is available for commercial customers with arrow-enabled servers.

Returns
The versions of the stream after inserting new points.

Return type
dict[uuid, int]

arrow_to_arrow_table()

Return a pyarrow table of data.

Note: This method is available for commercial customers with arrow-enabled servers.

arrow_to_dataframe(agg=None, name_callable=None)→ DataFrame
Returns a Pandas DataFrame object indexed by time and using the values of a stream for each column.

Parameters

• agg (List[str], default: ["mean"]) – Specify the StatPoint fields (e.g. ag-
gregating function) to create the dataframe from. Must be one or more of “min”,
“mean”, “max”, “count”, “stddev”, or “all”. This argument is ignored if not using
StatPoints.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method is available for commercial customers with arrow-enabled servers.

Examples

>>> conn = btrdb.connect()
>>> s1 = conn.stream_from_uuid('c9fd8735-5ec5-4141-9a51-d23e1b2dfa42')
>>> s2 = conn.stream_from_uuid('9173fa70-87ab-4ac8-ac08-4fd63b910cae'
>>> streamset = btrdb.stream.StreamSet([s1,s2])
>>> streamset.filter(start=1500000000000000000, end=1500000000900000001).arrow_
→˓to_dataframe()

new/stream/collection/foo new/
→˓stream/bar

time
2017-07-14 02:40:00+00:00 1.0 1.0
2017-07-14 02:40:00.100000+00:00 2.0 2.0
2017-07-14 02:40:00.200000+00:00 3.0 3.0
2017-07-14 02:40:00.300000+00:00 4.0 4.0
2017-07-14 02:40:00.400000+00:00 5.0 5.0
2017-07-14 02:40:00.500000+00:00 6.0 6.0
2017-07-14 02:40:00.600000+00:00 7.0 7.0
2017-07-14 02:40:00.700000+00:00 8.0 8.0

(continues on next page)

1.6. API Reference 63

btrdb-python Documentation, Release v5.32

(continued from previous page)

2017-07-14 02:40:00.800000+00:00 9.0 9.0
2017-07-14 02:40:00.900000+00:00 10.0 10.0

Use the stream uuids as their column names instead, using a lambda function.

>>> streamset.filter(start=1500000000000000000, end=1500000000900000001)
... .arrow_to_dataframe(
... name_callable=lambda s: str(s.uuid)
...)

c9fd8735-5ec5-4141-9a51-d23e1b2dfa42 ␣
→˓9173fa70-87ab-4ac8-ac08-4fd63b910cae

time
2017-07-14 02:40:00+00:00 1.0 ␣

→˓ 1.0
2017-07-14 02:40:00.100000+00:00 2.0 ␣

→˓ 2.0
2017-07-14 02:40:00.200000+00:00 3.0 ␣

→˓ 3.0
2017-07-14 02:40:00.300000+00:00 4.0 ␣

→˓ 4.0
2017-07-14 02:40:00.400000+00:00 5.0 ␣

→˓ 5.0
2017-07-14 02:40:00.500000+00:00 6.0 ␣

→˓ 6.0
2017-07-14 02:40:00.600000+00:00 7.0 ␣

→˓ 7.0
2017-07-14 02:40:00.700000+00:00 8.0 ␣

→˓ 8.0
2017-07-14 02:40:00.800000+00:00 9.0 ␣

→˓ 9.0
2017-07-14 02:40:00.900000+00:00 10.0 ␣

→˓ 10.0

A window query, with a window width of 0.4 seconds, and only showing the mean statpoint.

>>> streamset.filter(start=1500000000000000000, end=1500000000900000001)
... .windows(width=int(0.4*10**9))
... .arrow_to_dataframe(agg=["mean"])

new/stream/collection/foo/mean ␣
→˓new/stream/bar/mean

time
2017-07-14 02:40:00+00:00 2.5 ␣

→˓ 2.5
2017-07-14 02:40:00.400000+00:00 6.5 ␣

→˓ 6.5

A window query, with a window width of 0.4 seconds, and only showing the mean and count statpoints.

>>> streamset.filter(start=1500000000000000000, end=1500000000900000001)
... .windows(width=int(0.4*10**9))
... .arrow_to_dataframe(agg=["mean", "count"])

new/stream/collection/foo/mean new/stream/
→˓collection/foo/count new/stream/bar/mean new/stream/bar/count

(continues on next page)

64 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

(continued from previous page)

time
2017-07-14 02:40:00+00:00 2.5 ␣

→˓4 2.5 4
2017-07-14 02:40:00.400000+00:00 6.5 ␣

→˓4 6.5 4

arrow_to_dict(agg=None, name_callable=None)
Returns a list of dicts for each time code with the appropriate stream data attached.

Parameters

• agg (List[str], default: ["mean"]) – Specify the StatPoint field or fields
(e.g. aggregating function) to constrain dict keys. Must be one or more of “min”,
“mean”, “max”, “count”, or “stddev”. This argument is ignored if RawPoint values
are passed into the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method is available for commercial customers with arrow-enabled servers.

arrow_to_numpy(agg=None)
Return a multidimensional array in the numpy format.

Parameters
agg (List[str], default: ["mean"]) – Specify the StatPoint field or fields (e.g.
aggregating function) to return for the arrays. Must be one or more of “min”, “mean”,
“max”, “count”, or “stddev”. This argument is ignored if RawPoint values are passed into
the function.

Note: This method first converts to a pandas data frame then to a numpy array.

Note: This method is available for commercial customers with arrow-enabled servers.

arrow_to_polars(agg=None, name_callable=None)
Returns a Polars DataFrame object with time as a column and the values of a stream for each additional
column from an arrow table.

Parameters

• agg (List[str], default: ["mean"]) – Specify the StatPoint field or fields
(e.g. aggregating function) to create the dataframe from. Must be one or multiple
of “min”, “mean”, “max”, “count”, “stddev”, or “all”. This argument is ignored if not
using StatPoints.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method is available for commercial customers with arrow-enabled servers.

1.6. API Reference 65

btrdb-python Documentation, Release v5.32

arrow_to_series(agg=None, name_callable=None)
Returns a list of Pandas Series objects indexed by time

Parameters

• agg (List[str], default: ["mean"]) – Specify the StatPoint field or fields
(e.g. aggregating function) to create the Series from. Must be one or more of “min”,
“mean”, “max”, “count”, or “stddev”. This argument is ignored if RawPoint values
are passed into the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Return type
List[pandas.Series]

Note: This method is available for commercial customers with arrow-enabled servers.

Note: If you are not performing a window or aligned_window query, the agg parameter will be ignored.

Examples

Return a list of series of raw data per stream.

>>> conn = btrdb.connect()
>>> s1 = conn.stream_from_uuid('c9fd8735-5ec5-4141-9a51-d23e1b2dfa42')
>>> s2 = conn.stream_from_uuid('9173fa70-87ab-4ac8-ac08-4fd63b910cae'
>>> streamset = btrdb.stream.StreamSet([s1,s2])
>>> streamset.filter(start=1500000000000000000, end=1500000000900000001).arrow_
→˓to_series(agg=None)

[time
2017-07-14 02:40:00+00:00 1.0
2017-07-14 02:40:00.100000+00:00 2.0
2017-07-14 02:40:00.200000+00:00 3.0
2017-07-14 02:40:00.300000+00:00 4.0
2017-07-14 02:40:00.400000+00:00 5.0
2017-07-14 02:40:00.500000+00:00 6.0
2017-07-14 02:40:00.600000+00:00 7.0
2017-07-14 02:40:00.700000+00:00 8.0
2017-07-14 02:40:00.800000+00:00 9.0
2017-07-14 02:40:00.900000+00:00 10.0
Name: new/stream/collection/foo, dtype: double[pyarrow],
time
2017-07-14 02:40:00+00:00 1.0
2017-07-14 02:40:00.100000+00:00 2.0
2017-07-14 02:40:00.200000+00:00 3.0
2017-07-14 02:40:00.300000+00:00 4.0
2017-07-14 02:40:00.400000+00:00 5.0
2017-07-14 02:40:00.500000+00:00 6.0
2017-07-14 02:40:00.600000+00:00 7.0

(continues on next page)

66 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

(continued from previous page)

2017-07-14 02:40:00.700000+00:00 8.0
2017-07-14 02:40:00.800000+00:00 9.0
2017-07-14 02:40:00.900000+00:00 10.0
Name: new/stream/bar, dtype: double[pyarrow]]

A window query of 0.5seconds long.

>>> streamset.filter(start=1500000000000000000,␣
→˓end=1500000000900000001)
... .windows(width=int(0.5 * 10**9))
... .arrow_to_series(agg=["mean", "count"])

[time
2017-07-14 02:40:00+00:00 2.5
2017-07-14 02:40:00.400000+00:00 6.5
Name: new/stream/collection/foo/mean, dtype: double[pyarrow],

...
time
2017-07-14 02:40:00+00:00 4
2017-07-14 02:40:00.400000+00:00 4
Name: new/stream/collection/foo/count, dtype: uint64[pyarrow],

...
time
2017-07-14 02:40:00+00:00 2.5
2017-07-14 02:40:00.400000+00:00 6.5
Name: new/stream/bar/mean, dtype: double[pyarrow],

...
time
2017-07-14 02:40:00+00:00 4
2017-07-14 02:40:00.400000+00:00 4
Name: new/stream/bar/count, dtype: uint64[pyarrow]]

arrow_values()

Return a pyarrow table of stream values based on the streamset parameters.

This data will be sorted by the ‘time’ column.

Note: This method is available for commercial customers with arrow-enabled servers.

clone()

Returns a deep copy of the object. Attributes that cannot be copied will be referenced to both objects.

Parameters
None

Returns
Returns a new copy of the instance

Return type
StreamSet

count(precise: bool = False)
Compute the total number of points in the streams using filters.

1.6. API Reference 67

btrdb-python Documentation, Release v5.32

Computes the total number of points across all streams using the specified filters. By default, this returns
the latest total count of all points in the streams. The count is modified by start and end filters or by pinning
versions.

Parameters
precise (bool, default = False) – Use statpoint counts using aligned_windows
which trades accuracy for speed.

Returns

• int – The total number of points in all streams for the specified filters.

• .. note:: – Note that this helper method sums the counts of all StatPoints returned by
aligned_windows. Because of this the start and end timestamps may be adjusted if
they are not powers of 2.

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream1 = conn.stream_from_uuid("...")
>>> stream2 = conn.stream_from_uuid("...")
>>> streamset = btrdb.stream.StreamSet([stream1, stream2])
>>> streamset.count()
2345
>>> filtered_streamset = streamset.filter(start=1500000000000000000,␣
→˓end=1500000001000000000)
>>> filtered_streamset.count(precise=True)
734
>>> streamset.filter(start=1500000000000000000, end=1500000001000000000).
→˓count(precise=True)
734

current()

Returns the points of data in the streams closest to the current timestamp. If the current timestamp is
outside the filtered range of data, a ValueError is raised.

Returns
The latest points of data found among all streams

Return type
tuple

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream1 = conn.stream_from_uuid("...")
>>> stream2 = conn.stream_from_uuid("...")
>>> streamset = btrdb.stream.StreamSet([stream1, stream2])
>>> streamset.current()
(<RawPoint ...>, <RawPoint ...>)

68 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

earliest()

Returns earliest points of data in streams using available filters.

Parameters
None

Returns
The earliest points of data found among all streams

Return type
tuple

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream1 = conn.stream_from_uuid("...")
>>> stream2 = conn.stream_from_uuid("...")
>>> streamset = btrdb.stream.StreamSet([stream1, stream2])
>>> streamset.earliest()
(<RawPoint ...>, <RawPoint ...>)

filter(start=None, end=None, collection=None, name=None, unit=None, tags=None, annotations=None,
sampling_frequency=None, schema=None)

Provides a new StreamSet instance containing stored query parameters and stream objects that match fil-
tering criteria.

The collection, name, and unit arguments will be used to select streams from the original StreamSet object.
If a string is supplied, then a case-insensitive exact match is used to select streams. Otherwise, you may
supply a compiled regex pattern that will be used with re.search.

The tags and annotations arguments expect dictionaries for the desired key/value pairs. Any stream in the
original instance that has the exact key/values will be included in the new StreamSet instance.

Parameters

• start (int or datetime like object) – the inclusive start of the query (see
btrdb.utils.timez.to_nanoseconds() for valid input types)

• end (int or datetime like object) – the exclusive end of the query (see
btrdb.utils.timez.to_nanoseconds() for valid input types)

• collection (str or regex) – string for exact (case-insensitive) matching of col-
lection when filtering streams or a compiled regex expression for re.search of stream
collections.

• name (str or regex) – string for exact (case-insensitive) matching of name when
filtering streams or a compiled regex expression for re.search of stream names.

• unit (str or regex) – string for exact (case-insensitive) matching of unit when
filtering streams or a compiled regex expression for re.search of stream units.

• tags (dict) – key/value pairs for filtering streams based on tags

• annotations (dict) – key/value pairs for filtering streams based on annotations

• sampling_frequency (float) – The sampling frequency of the data streams in Hz,
set this if you want timesnapped values.

1.6. API Reference 69

btrdb-python Documentation, Release v5.32

• schema (pyarrow.Schema) – Optional arrow schema the server will cast the returned
data to before sending it over the network. You can use this to change the timestamp
format, column names or data sizes.

Returns
a new instance cloned from the original with filters applied

Return type
StreamSet

Note: If you set sampling_frequency to a non-zero value, the stream data returned will be aligned to
a grid of timestamps based on the period of the sampling frequency. For example, a sampling rate of 30hz
will have a sampling period of 1/30hz -> ~33_333_333 ns per sample. Leave sampling_frequency as
None, or set to 0 to prevent time alignment. You should not use aligned data for frequency-based analysis.

Examples

create a streamset and apply a few filters

>>> streamset = btrdb.stream.StreamSet(list_of_streams)
>>> print(f"Total streams: {len(streamset)}")
Total streams: 89

>>> streamset.filter(units="Volts")
>>> print(f"Total streams: {len(streamset)}")
Total streams: 89

>>> filtered_streamset = streamset.filter(units="Volts")
>>> print(f"Total streams: {len(filtered_streamset)}")
Total streams: 23

>>> multiple_filters_streamset = (streamset.filter(unit="Volts")
>>> .filter(name="Sensor 1")
>>> .filter(annotations={"phase":"A"})
>>>)
>>> print(f"Total streams: {len(multiple_filters_streamset)}")
Total streams: 1

index(value[, start[, stop]])→ integer -- return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(data_map: dict, merge: str = 'never')→ dict
Insert new data in the form (time, value) into their mapped streams.

The times in the dataframe need not be sorted by time. If the point counts are larger than appropriate, this
function will automatically chunk the inserts. As a consequence, the insert is not necessarily atomic, but
can be used with a very large array.

Parameters

• data_map (dict[uuid, pandas.DataFrame]) – A dictionary mapping stream
uuids to insert data into and their value as a pandas dataframe containing two columns,

70 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

one named “time” which contains int64 utc+0 timestamps and a “value” column con-
taining float64 measurements. These columns will be typecast into these types.

• merge (str) –

A string describing the merge policy. Valid policies are:

– ’never’: the default, no points are merged

– ’equal’: points are deduplicated if the time and value are equal

– ’retain’: if two points have the same timestamp, the old one is kept

– ’replace’: if two points have the same timestamp, the new one is kept

Returns
The versions of the stream after inserting new points.

Return type
dict[uuid, int]

Note: You MUST convert your datetimes into UTC+0 yourself. BTrDB expects UTC+0 datetimes.

Examples

>>> import pandas as pd
>>> import btrdb
>>> conn = btrdb.connect()
>>> stream1 = conn.stream_from_uuid("...")
>>> stream2 = conn.stream_from_uuid("...")
>>> streamset = btrdb.stream.StreamSet([stream1, stream2])
>>> data_map = {
... stream1.uuid: pd.DataFrame({'time': [1500000000000000000,␣
→˓1500000000100000000], 'value': [1.0, 2.0]}),
... stream2.uuid: pd.DataFrame({'time': [1500000000000000000,␣
→˓1500000000100000000], 'value': [3.0, 4.0]})
... }
>>> streamset.insert(data_map)
{UUID('...'): 1234, UUID('...'): 5678}
>>> streamset.insert(data_map, merge='replace')
{UUID('...'): 1235, UUID('...'): 5679}

latest()

Returns latest points of data in the streams using available filters.

Parameters
None

Returns
The latest points of data found among all streams

Return type
tuple

1.6. API Reference 71

btrdb-python Documentation, Release v5.32

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream1 = conn.stream_from_uuid("...")
>>> stream2 = conn.stream_from_uuid("...")
>>> streamset = btrdb.stream.StreamSet([stream1, stream2])
>>> streamset.earliest()
(<RawPoint ...>, <RawPoint ...>)

pin_versions(versions=None)
Saves the stream versions that future materializations should use. If no pin is requested then the first
materialization will automatically pin the return versions. Versions can also be supplied through a dict
object with key:UUID, value:stream.version().

Parameters
versions (dict[UUID: int]) – A dict containing the stream UUID and version ints as
key/values

Returns
Returns self

Return type
StreamSet

Examples

>>> version_map = {s.uuid: 0 for s in streamset}
>>> pinned_streamset = streamset.pin_versions(versions=version_map)

rows()

Returns a materialized list of tuples where each tuple contains the points from each stream at a unique
time. If a stream has no value for that time than None is provided instead of a point object.

Parameters
None

Returns
A list of tuples containing a RawPoint (or StatPoint) and the stream version
(list(tuple(RawPoint, int))).

Return type
list

Examples

>>> for row in streams.rows():
>>> print(row)
(None, RawPoint(1500000000000000000, 1.0), RawPoint(1500000000000000000, 1.0),␣
→˓RawPoint(1500000000000000000, 1.0))
(RawPoint(1500000000100000000, 2.0), None, RawPoint(1500000000100000000, 2.0),␣
→˓RawPoint(1500000000100000000, 2.0))
(None, RawPoint(1500000000200000000, 3.0), None, RawPoint(1500000000200000000,␣

(continues on next page)

72 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

(continued from previous page)

→˓3.0))
(RawPoint(1500000000300000000, 4.0), None, RawPoint(1500000000300000000, 4.0),␣
→˓RawPoint(1500000000300000000, 4.0))
(None, RawPoint(1500000000400000000, 5.0), RawPoint(1500000000400000000, 5.0),␣
→˓RawPoint(1500000000400000000, 5.0))
(RawPoint(1500000000500000000, 6.0), None, None, RawPoint(1500000000500000000,␣
→˓6.0))
(None, RawPoint(1500000000600000000, 7.0), RawPoint(1500000000600000000, 7.0),␣
→˓RawPoint(1500000000600000000, 7.0))
(RawPoint(1500000000700000000, 8.0), None, RawPoint(1500000000700000000, 8.0),␣
→˓RawPoint(1500000000700000000, 8.0))
(None, RawPoint(1500000000800000000, 9.0), RawPoint(1500000000800000000, 9.0),␣
→˓RawPoint(1500000000800000000, 9.0))
(RawPoint(1500000000900000000, 10.0), None, RawPoint(1500000000900000000, 10.
→˓0), RawPoint(1500000000900000000, 10.0))

to_array(agg='mean')
Returns a multidimensional numpy array (similar to a list of lists) containing point classes.

Parameters
agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating function)
to return for the arrays. Must be one of “min”, “mean”, “max”, “count”, or “stddev”. This
argument is ignored if RawPoint values are passed into the function.

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data
retrieval.

to_csv(fobj, dialect=None, fieldnames=None, agg='mean', name_callable=None)
Saves stream data as a CSV file.

Parameters

• fobj (str or file-like object) – Path to use for saving CSV file or a file-like
object to use to write to.

• dialect (csv.Dialect) – CSV dialect object from Python csv module. See Python’s
csv module for more information.

• fieldnames (sequence) – A sequence of strings to use as fieldnames in the CSV
header. See Python’s csv module for more information.

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating func-
tion) to return when limiting results. Must be one of “min”, “mean”, “max”, “count”,
or “stddev”. This argument is ignored if RawPoint values are passed into the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data
retrieval.

to_dataframe(agg='mean', name_callable=None)
Returns a Pandas DataFrame object indexed by time and using the values of a stream for each column.

1.6. API Reference 73

btrdb-python Documentation, Release v5.32

Parameters

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating func-
tion) to create the Series from. Must be one of “min”, “mean”, “max”, “count”, “std-
dev”, or “all”. This argument is ignored if not using StatPoints.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object. This is not compatible with agg == “all” at this time

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data
retrieval.

to_dict(agg='mean', name_callable=None)
Returns a list of OrderedDict for each time code with the appropriate stream data attached.

Parameters

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating func-
tion) to constrain dict keys. Must be one of “min”, “mean”, “max”, “count”, or “std-
dev”. This argument is ignored if RawPoint values are passed into the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data
retrieval.

to_polars(agg='mean', name_callable=None)
Returns a Polars DataFrame object with time as a column and the values of a stream for each additional
column.

Parameters

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating func-
tion) to create the Series from. Must be one of “min”, “mean”, “max”, “count”, “std-
dev”, or “all”. This argument is ignored if not using StatPoints.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object. This is not compatible with agg == “all” at this time

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data
retrieval.

to_series(datetime64_index=True, agg='mean', name_callable=None)
Returns a list of Pandas Series objects indexed by time

Parameters

• datetime64_index (bool) – Directs function to convert Series index to
np.datetime64[ns] or leave as np.int64.

74 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating func-
tion) to create the Series from. Must be one of “min”, “mean”, “max”, “count”, or
“stddev”. This argument is ignored if RawPoint values are passed into the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data
retrieval.

to_table(agg='mean', name_callable=None)
Returns string representation of the data in tabular form using the tabulate library.

Parameters

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating func-
tion) to create the Series from. Must be one of “min”, “mean”, “max”, “count”, or
“stddev”. This argument is ignored if RawPoint values are passed into the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the column name given a
Stream object.

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data
retrieval.

values()

Returns a fully materialized list of lists for the stream values/points

versions()

Returns a dict of the stream versions. These versions are the pinned values if previously pinned or the
latest stream versions if not pinned.

Parameters
None

Returns
A dict containing the stream UUID and version ints as key/values

Return type
dict

Examples

A pinned vs non-pinned streamset

>>> streamset = btrdb.stream.StreamSet([stream1, stream2])
>>> version_map = {s.uuid: 0 for s streamset}
>>> pinned_streamset = streamset.pin_versions(versions=version_map)
>>> pinned_streamset.versions()
{UUID('fa42f64a-a851-408f-aa7e-88a85b3d295c'): 0, UUID('18e5527a-ed13-424d-
→˓bb97-3e06a763609e'): 0}
>>> streamset.versions()

(continues on next page)

1.6. API Reference 75

btrdb-python Documentation, Release v5.32

(continued from previous page)

{UUID('fa42f64a-a851-408f-aa7e-88a85b3d295c'): 34532, UUID('18e5527a-ed13-424d-
→˓bb97-3e06a763609e'): 12345}

windows(width, depth=0)
Stores the request for a windowing operation when the query is eventually materialized.

Parameters

• width (int) – The number of nanoseconds to use for each window size.

• depth (int) – The requested accuracy of the data up to 2^depth nanoseconds. A depth
of 0 is accurate to the nanosecond. This is now the only valid value for depth.

Returns
Returns self

Return type
StreamSet

Note: windows returns arbitrary precision windows from BTrDB. It is slower than aligned_windows,
but can be significantly faster than values. Each returned window will be width nanoseconds long. start
is inclusive, but end is exclusive ([start, end)) (e.g. if end < start+width you will get
no results). That is, results will be returned for all windows that start at a
time less than the end timestamp. If (``end - start) is not a multiple of width, then end
will be decreased to the greatest value less than end such that (end - start) is a multiple of width (i.e., we
set end = start + width * floordiv(end - start, width)). The depth parameter previously available has been
deprecated. The only valid value for depth is now 0.

Examples

>>> import btrdb
>>> conn = btrdb.connect()
>>> stream1 = conn.stream_from_uuid("...")
>>> stream2 = conn.stream_from_uuid("...")
>>> streamset = btrdb.stream.StreamSet([stream1, stream2])
>>> streamset.windows(width=1000000000)
<StreamSet ...>
>>> streamset.windows(width=1000000000, depth=0)
<StreamSet ...>
>>> streamset.aligned_windows(pointwidth=30)
Traceback (most recent call last):
...

btrdb.exceptions.InvalidOperation: A window operation is already requested

76 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

1.6.4 btrdb.point

Module for Point classes

class btrdb.point.RawPoint(time, value)
A point of data representing a single position within a time series. Each point contains a read-only time and
value attribute.

Parameters

• time (int) – The time portion of a single value in the time series in nanoseconds since
the Unix epoch.

• value (float) – The value of a time series at a single point in time.

Attributes

time
The time portion of a data point in nanoseconds since the Unix epoch.

value
The value portion of a data point as a float object.

Methods

from_proto
from_proto_list
to_proto
to_proto_list

property time

The time portion of a data point in nanoseconds since the Unix epoch.

property value

The value portion of a data point as a float object.

class btrdb.point.StatPoint(time, minv, meanv, maxv, count, stddev)
An aggregated data point representing a summary or rollup of one or more points of data within a single time
series.

This aggregation point provides for the min, mean, max, count, and standard deviation of all data values it spans.
It is returned by windowing queries such as windows or aligned_windows.

Parameters

• time (int) – The start time of the window which spans the aggregated values. Repre-
sented in nanoseconds since the Unix epoch.

• min (float) – The minimum value in a time series within a specified range of time.

• mean (float) – The mean value in a time series within a specified range of time.

• max (float) – The maximum value in a time series within a specified range of time.

• count (float) – The number of values in a time series within a specified range of time.

• stddev (float) – The standard deviation of values in a time series within a specified
range of time.

1.6. API Reference 77

btrdb-python Documentation, Release v5.32

Notes

This object may also be treated as a tuple by referencing the values according to position.

// returns time
val = point[0]

// returns standard deviation
val = point[5]

Attributes

count
The number of values within the time series for a range of time

max
The maximum value of the time series within a range of time

mean
The mean value of the time series within a range of time

min
The minimum value of the time series within a range of time

stddev
The standard deviation of the values of a time series within a range of time

time
The starting time of the time series within the stat point

Methods

from_proto
from_proto_list

property count

The number of values within the time series for a range of time

property max

The maximum value of the time series within a range of time

property mean

The mean value of the time series within a range of time

property min

The minimum value of the time series within a range of time

property stddev

The standard deviation of the values of a time series within a range of time

property time

The starting time of the time series within the stat point

78 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

1.6.5 btrdb.exceptions

exception btrdb.exceptions.BTrDBError

The primary exception for BTrDB errors.

exception btrdb.exceptions.ConnectionError

Raised when an error occurrs while trying to establish a connection with BTrDB.

exception btrdb.exceptions.StreamNotFoundError

Raised when attempting to perform an operation on a stream that does not exist in the specified BTrDB allocation.

exception btrdb.exceptions.CredentialsFileNotFound

Raised when a credentials file could not be found.

exception btrdb.exceptions.ProfileNotFound

Raised when a requested profile could not be found in the credentials file.

exception btrdb.exceptions.BTRDBServerError

Raised when an error occurs with btrdb-server.

exception btrdb.exceptions.BTRDBTypeError

Raised when attempting to perform an operation with an invalid type.

exception btrdb.exceptions.InvalidOperation

Raised when an invalid BTrDB operation has been requested.

exception btrdb.exceptions.StreamExists

Raised when create() has been attempted and the uuid already exists.

exception btrdb.exceptions.AmbiguousStream

Raised when create() has been attempted and uuid is different, but collection and tags already exist

exception btrdb.exceptions.PermissionDenied

Raised when user does not have permission to perform an operation.

exception btrdb.exceptions.BTRDBValueError

Raised when an invalid value has been passed to a BTrDB operation.

exception btrdb.exceptions.InvalidCollection

Raised when a collection name is invalid. It is either too long or not a valid string.

exception btrdb.exceptions.InvalidTagKey

Raised when a tag key is invalid. Must be one of (“name”, “unit”, “ingress”, “distiller”).

exception btrdb.exceptions.InvalidTagValue

Raised when a tag value is invalid. It is either too long or not a valid string.

exception btrdb.exceptions.InvalidTimeRange

Raised when insert data contains a timestamp outside the range of (btrdb.MINIMUM_TIME,
btrdb.MAXIMUM_TIME)

exception btrdb.exceptions.InvalidPointWidth

Raised when attempting to use a pointwidth that is not a whole number between 0 and 64 (exclusive).

exception btrdb.exceptions.BadValue

Raised when attempting to insert data that contains non-float values such as None.

1.6. API Reference 79

btrdb-python Documentation, Release v5.32

exception btrdb.exceptions.RecycledUUID

Raised when attempting to create a stream with a uuid that matches a previously deleted stream.

exception btrdb.exceptions.BadSQLValue

Raised when invalid parameters have been passed to metadata db.

exception btrdb.exceptions.VersionNotAvailable

Raised when querying a stream at a pruned or otherwise invalid version number.

exception btrdb.exceptions.NoSuchPoint

Raised when asking for next/previous point and there isn’t one.

1.6.6 btrdb.transformers

A number of transformation and serialization functions have been developed so you can use the data in the format of
your choice. These functions are provided in the StreamSet class. Value transformation utilities

btrdb.transformers.arrow_to_dict(streamset, agg=None, name_callable=None)
Returns a list of dicts for each time code with the appropriate stream data attached.

Parameters

• agg (List[str], default: ["mean"]) – Specify the StatPoint field or fields (e.g.
aggregating function) to constrain dict keys. Must be one or more of “min”, “mean”,
“max”, “count”, or “stddev”. This argument is ignored if RawPoint values are passed into
the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method is available for commercial customers with arrow-enabled servers.

btrdb.transformers.arrow_to_numpy(streamset, agg=None)
Return a multidimensional array in the numpy format.

Parameters
agg (List[str], default: ["mean"]) – Specify the StatPoint field or fields (e.g. ag-
gregating function) to return for the arrays. Must be one or more of “min”, “mean”, “max”,
“count”, or “stddev”. This argument is ignored if RawPoint values are passed into the function.

Note: This method first converts to a pandas data frame then to a numpy array.

Note: This method is available for commercial customers with arrow-enabled servers.

btrdb.transformers.arrow_to_series(streamset, agg=None, name_callable=None)
Returns a list of Pandas Series objects indexed by time

Parameters

• agg (List[str], default: ["mean"]) – Specify the StatPoint field or fields (e.g.
aggregating function) to create the Series from. Must be one or more of “min”, “mean”,

80 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

“max”, “count”, or “stddev”. This argument is ignored if RawPoint values are passed into
the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Return type
List[pandas.Series]

Note: This method is available for commercial customers with arrow-enabled servers.

Note: If you are not performing a window or aligned_window query, the agg parameter will be ignored.

Examples

Return a list of series of raw data per stream.

>>> conn = btrdb.connect()
>>> s1 = conn.stream_from_uuid('c9fd8735-5ec5-4141-9a51-d23e1b2dfa42')
>>> s2 = conn.stream_from_uuid('9173fa70-87ab-4ac8-ac08-4fd63b910cae'
>>> streamset = btrdb.stream.StreamSet([s1,s2])
>>> streamset.filter(start=1500000000000000000, end=1500000000900000001).arrow_to_
→˓series(agg=None)

[time
2017-07-14 02:40:00+00:00 1.0
2017-07-14 02:40:00.100000+00:00 2.0
2017-07-14 02:40:00.200000+00:00 3.0
2017-07-14 02:40:00.300000+00:00 4.0
2017-07-14 02:40:00.400000+00:00 5.0
2017-07-14 02:40:00.500000+00:00 6.0
2017-07-14 02:40:00.600000+00:00 7.0
2017-07-14 02:40:00.700000+00:00 8.0
2017-07-14 02:40:00.800000+00:00 9.0
2017-07-14 02:40:00.900000+00:00 10.0
Name: new/stream/collection/foo, dtype: double[pyarrow],
time
2017-07-14 02:40:00+00:00 1.0
2017-07-14 02:40:00.100000+00:00 2.0
2017-07-14 02:40:00.200000+00:00 3.0
2017-07-14 02:40:00.300000+00:00 4.0
2017-07-14 02:40:00.400000+00:00 5.0
2017-07-14 02:40:00.500000+00:00 6.0
2017-07-14 02:40:00.600000+00:00 7.0
2017-07-14 02:40:00.700000+00:00 8.0
2017-07-14 02:40:00.800000+00:00 9.0
2017-07-14 02:40:00.900000+00:00 10.0
Name: new/stream/bar, dtype: double[pyarrow]]

A window query of 0.5seconds long.

1.6. API Reference 81

btrdb-python Documentation, Release v5.32

>>> streamset.filter(start=1500000000000000000, end=1500000000900000001)
... .windows(width=int(0.5 * 10**9))
... .arrow_to_series(agg=["mean", "count"])

[time
2017-07-14 02:40:00+00:00 2.5
2017-07-14 02:40:00.400000+00:00 6.5
Name: new/stream/collection/foo/mean, dtype: double[pyarrow],

...
time
2017-07-14 02:40:00+00:00 4
2017-07-14 02:40:00.400000+00:00 4
Name: new/stream/collection/foo/count, dtype: uint64[pyarrow],

...
time
2017-07-14 02:40:00+00:00 2.5
2017-07-14 02:40:00.400000+00:00 6.5
Name: new/stream/bar/mean, dtype: double[pyarrow],

...
time
2017-07-14 02:40:00+00:00 4
2017-07-14 02:40:00.400000+00:00 4
Name: new/stream/bar/count, dtype: uint64[pyarrow]]

btrdb.transformers.arrow_to_dataframe(streamset, agg=None, name_callable=None)→ DataFrame
Returns a Pandas DataFrame object indexed by time and using the values of a stream for each column.

Parameters

• agg (List[str], default: ["mean"]) – Specify the StatPoint fields (e.g. aggre-
gating function) to create the dataframe from. Must be one or more of “min”, “mean”,
“max”, “count”, “stddev”, or “all”. This argument is ignored if not using StatPoints.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method is available for commercial customers with arrow-enabled servers.

Examples

>>> conn = btrdb.connect()
>>> s1 = conn.stream_from_uuid('c9fd8735-5ec5-4141-9a51-d23e1b2dfa42')
>>> s2 = conn.stream_from_uuid('9173fa70-87ab-4ac8-ac08-4fd63b910cae'
>>> streamset = btrdb.stream.StreamSet([s1,s2])
>>> streamset.filter(start=1500000000000000000, end=1500000000900000001).arrow_to_
→˓dataframe()

new/stream/collection/foo new/stream/
→˓bar

time
2017-07-14 02:40:00+00:00 1.0 1.0
2017-07-14 02:40:00.100000+00:00 2.0 2.0

(continues on next page)

82 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

(continued from previous page)

2017-07-14 02:40:00.200000+00:00 3.0 3.0
2017-07-14 02:40:00.300000+00:00 4.0 4.0
2017-07-14 02:40:00.400000+00:00 5.0 5.0
2017-07-14 02:40:00.500000+00:00 6.0 6.0
2017-07-14 02:40:00.600000+00:00 7.0 7.0
2017-07-14 02:40:00.700000+00:00 8.0 8.0
2017-07-14 02:40:00.800000+00:00 9.0 9.0
2017-07-14 02:40:00.900000+00:00 10.0 10.0

Use the stream uuids as their column names instead, using a lambda function.

>>> streamset.filter(start=1500000000000000000, end=1500000000900000001)
... .arrow_to_dataframe(
... name_callable=lambda s: str(s.uuid)
...)

c9fd8735-5ec5-4141-9a51-d23e1b2dfa42 9173fa70-
→˓87ab-4ac8-ac08-4fd63b910cae

time
2017-07-14 02:40:00+00:00 1.0 ␣

→˓ 1.0
2017-07-14 02:40:00.100000+00:00 2.0 ␣

→˓ 2.0
2017-07-14 02:40:00.200000+00:00 3.0 ␣

→˓ 3.0
2017-07-14 02:40:00.300000+00:00 4.0 ␣

→˓ 4.0
2017-07-14 02:40:00.400000+00:00 5.0 ␣

→˓ 5.0
2017-07-14 02:40:00.500000+00:00 6.0 ␣

→˓ 6.0
2017-07-14 02:40:00.600000+00:00 7.0 ␣

→˓ 7.0
2017-07-14 02:40:00.700000+00:00 8.0 ␣

→˓ 8.0
2017-07-14 02:40:00.800000+00:00 9.0 ␣

→˓ 9.0
2017-07-14 02:40:00.900000+00:00 10.0 ␣

→˓ 10.0

A window query, with a window width of 0.4 seconds, and only showing the mean statpoint.

>>> streamset.filter(start=1500000000000000000, end=1500000000900000001)
... .windows(width=int(0.4*10**9))
... .arrow_to_dataframe(agg=["mean"])

new/stream/collection/foo/mean new/
→˓stream/bar/mean

time
2017-07-14 02:40:00+00:00 2.5 ␣

→˓ 2.5
2017-07-14 02:40:00.400000+00:00 6.5 ␣

→˓ 6.5

A window query, with a window width of 0.4 seconds, and only showing the mean and count statpoints.

1.6. API Reference 83

btrdb-python Documentation, Release v5.32

>>> streamset.filter(start=1500000000000000000, end=1500000000900000001)
... .windows(width=int(0.4*10**9))
... .arrow_to_dataframe(agg=["mean", "count"])

new/stream/collection/foo/mean new/stream/collection/
→˓foo/count new/stream/bar/mean new/stream/bar/count

time
2017-07-14 02:40:00+00:00 2.5 4 ␣

→˓ 2.5 4
2017-07-14 02:40:00.400000+00:00 6.5 4 ␣

→˓ 6.5 4

btrdb.transformers.arrow_to_polars(streamset, agg=None, name_callable=None)
Returns a Polars DataFrame object with time as a column and the values of a stream for each additional column
from an arrow table.

Parameters

• agg (List[str], default: ["mean"]) – Specify the StatPoint field or fields (e.g.
aggregating function) to create the dataframe from. Must be one or multiple of “min”,
“mean”, “max”, “count”, “stddev”, or “all”. This argument is ignored if not using Stat-
Points.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method is available for commercial customers with arrow-enabled servers.

btrdb.transformers.arrow_to_arrow_table(streamset)
Return a pyarrow table of data.

Note: This method is available for commercial customers with arrow-enabled servers.

btrdb.transformers.to_dict(streamset, agg='mean', name_callable=None)
Returns a list of OrderedDict for each time code with the appropriate stream data attached.

Parameters

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating function)
to constrain dict keys. Must be one of “min”, “mean”, “max”, “count”, or “stddev”. This
argument is ignored if RawPoint values are passed into the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data retrieval.

btrdb.transformers.to_array(streamset, agg='mean')
Returns a multidimensional numpy array (similar to a list of lists) containing point classes.

Parameters
agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating function)

84 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

to return for the arrays. Must be one of “min”, “mean”, “max”, “count”, or “stddev”. This
argument is ignored if RawPoint values are passed into the function.

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data retrieval.

btrdb.transformers.to_polars(streamset, agg='mean', name_callable=None)
Returns a Polars DataFrame object with time as a column and the values of a stream for each additional column.

Parameters

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating function)
to create the Series from. Must be one of “min”, “mean”, “max”, “count”, “stddev”, or
“all”. This argument is ignored if not using StatPoints.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object. This is not compatible with agg == “all” at this time

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data retrieval.

btrdb.transformers.to_series(streamset, datetime64_index=True, agg='mean', name_callable=None)
Returns a list of Pandas Series objects indexed by time

Parameters

• datetime64_index (bool) – Directs function to convert Series index to
np.datetime64[ns] or leave as np.int64.

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating function)
to create the Series from. Must be one of “min”, “mean”, “max”, “count”, or “stddev”.
This argument is ignored if RawPoint values are passed into the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data retrieval.

btrdb.transformers.to_dataframe(streamset, agg='mean', name_callable=None)
Returns a Pandas DataFrame object indexed by time and using the values of a stream for each column.

Parameters

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating function)
to create the Series from. Must be one of “min”, “mean”, “max”, “count”, “stddev”, or
“all”. This argument is ignored if not using StatPoints.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object. This is not compatible with agg == “all” at this time

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data retrieval.

1.6. API Reference 85

btrdb-python Documentation, Release v5.32

btrdb.transformers.to_csv(streamset, fobj, dialect=None, fieldnames=None, agg='mean',
name_callable=None)

Saves stream data as a CSV file.

Parameters

• fobj (str or file-like object) – Path to use for saving CSV file or a file-like object
to use to write to.

• dialect (csv.Dialect) – CSV dialect object from Python csv module. See Python’s
csv module for more information.

• fieldnames (sequence) – A sequence of strings to use as fieldnames in the CSV header.
See Python’s csv module for more information.

• agg (str, default: "mean") – Specify the StatPoint field (e.g. aggregating func-
tion) to return when limiting results. Must be one of “min”, “mean”, “max”, “count”, or
“stddev”. This argument is ignored if RawPoint values are passed into the function.

• name_callable (lambda, default: lambda s: s.collection + "/" +
s.name) – Specify a callable that can be used to determine the series name given a
Stream object.

Note: This method does not use the arrow -accelerated endpoints for faster and more efficient data retrieval.

1.6.7 btrdb.utils.timez

Time related utilities

btrdb.utils.timez.currently_as_ns()

Returns the current UTC time as nanoseconds since epoch

btrdb.utils.timez.datetime_to_ns(dt)
Converts a datetime object to nanoseconds since epoch. If a timezone aware object is received then it will be
converted to UTC.

Parameters
dt (datetime)

Returns
nanoseconds

Return type
int

btrdb.utils.timez.ns_delta(days=0, hours=0, minutes=0, seconds=0, milliseconds=0, microseconds=0,
nanoseconds=0)

Similar to timedelta, ns_delta represents a span of time but as the total number of nanoseconds.

Parameters

• days (int, float, decimal.Decimal) – days (as 24 hours) to convert to nanoseconds

• hours (int, float, decimal.Decimal) – hours to convert to nanoseconds

• minutes (int, float, decimal.Decimal) – minutes to convert to nanoseconds

• seconds (int, float, decimal.Decimal) – seconds to convert to nanoseconds

86 Chapter 1. User Guide

btrdb-python Documentation, Release v5.32

• milliseconds (int, float, decimal.Decimal) – milliseconds to convert to
nanoseconds

• microseconds (int, float, decimal.Decimal) – microseconds to convert to
nanoseconds

• nanoseconds (int) – nanoseconds to add to the time span

Returns
amount of time in nanoseconds

Return type
int

Examples

1 minute time delta should be 60 billion nanoseconds

>>> deltaT = ns_delta(minutes=1)
>>> deltaT == 1 * 60 * 10**9 # 1 minute * 60 seconds * 1billion nanoseconds / second
True

btrdb.utils.timez.ns_to_datetime(ns)
Converts nanoseconds to a naive datetime object (UTC+0)

Parameters
ns (int) – nanoseconds since epoch

Returns
nanoseconds since epoch as a datetime object

Return type
datetime

btrdb.utils.timez.to_nanoseconds(val)
Converts datetime, datetime64, float, str (RFC 2822) to nanoseconds. If a datetime-like object is received then
nanoseconds since epoch is returned.

Parameters
val (datetime, datetime64, float, str) – an object to convert to nanoseconds

Returns
object converted to nanoseconds

Return type
int

Notes

The following string formats are supported for conversion.

1.6. API Reference 87

btrdb-python Documentation, Release v5.32

Format String Description
%Y-%m-%d %H:%M:%S.%f%z RFC3339 format
%Y-%m-%d %H:%M:%S.%f RFC3339 with UTC default timezone
%Y-%m-%dT%H:%M:%S.%fZ JSON encoding, UTC timezone
%Y-%m-%dT%H:%M:%SZ JSON encoding, UTC timezone, without s
%Y-%m-%dT%H:%M:%S.%f%z JSON-like encoding
%Y-%m-%dT%H:%M:%S.%f JSON-like encoding, UTC default timezone
%Y-%m-%d %H:%M:%S%z human readable date time with TZ
%Y-%m-%d %H:%M:%S human readable date time UTC default
%Y-%m-%d midnight at a particular date

1.7 Changelog

1.7.1 5.32.0

What’s Changed

• Initial docstring overhaul and a new test for better documentation and test coverage. by @JustinGilmer in #82

• Test new join logic for improved data loading for windowed queries. by @JustinGilmer in #80

• Improve arrow_to_dataframe function for handling large amounts of columns, enhancing performance and
usability. by @Jefflinf in #73

• Expand testing to include Python 3.11, ensuring compatibility and stability. by @JustinGilmer in #74

• Update exception handling to better support RpcErrors, improving error management and debugging. by
@JustinGilmer in #72

• Introduce an option for specifying the schema of the returned raw data, allowing for more flexibility in data
handling. by @andrewchambers in #51

• Remove non-required dependencies and migrate to ‘data’ optional dependency for a lighter package and easier
installation. by @JustinGilmer in #71

• New method to get first and last timestamps from aligned_windows, enhancing data analysis capabilities. by
@Jefflinf in #70

• Add to_timedelta method for pointwidth class, providing more options for time-based data manipulation.
by @Jefflinf in #69

Fixed

• Fix NoneType error for earliest/latest for empty streams, ensuring reliability and error handling. by @Jef-
flinf in #64

• Correct integration tests where the time column is not automatically set as the index, improving test accuracy
and reliability. by @JustinGilmer in #56

88 Chapter 1. User Guide

https://github.com/pingthingsio/btrdb-python/pull/82
https://github.com/pingthingsio/btrdb-python/pull/80
https://github.com/pingthingsio/btrdb-python/pull/73
https://github.com/pingthingsio/btrdb-python/pull/74
https://github.com/pingthingsio/btrdb-python/pull/72
https://github.com/pingthingsio/btrdb-python/pull/51
https://github.com/pingthingsio/btrdb-python/pull/71
https://github.com/pingthingsio/btrdb-python/pull/70
https://github.com/pingthingsio/btrdb-python/pull/69
https://github.com/pingthingsio/btrdb-python/pull/64
https://github.com/pingthingsio/btrdb-python/pull/56

btrdb-python Documentation, Release v5.32

Deprecated

• FutureWarning for streams_in_collection to return StreamSet in the future, preparing users for upcoming
API changes. by @Jefflinf in #60

Full Changelog: GitHub compare view

1.7.2 5.31.0

What’s Changed

• Have release script update pyproject.toml file by @youngale-pingthings in https://github.com/PingThingsIO/
btrdb-python/pull/48

• Provide option to sort the arrow tables by @justinGilmer in https://github.com/PingThingsIO/btrdb-python/pull/
47

• Remove 4MB limit for gRPC message payloads by @justinGilmer in https://github.com/PingThingsIO/
btrdb-python/pull/49

• Update documentation for arrow methods by @justinGilmer in https://github.com/PingThingsIO/btrdb-python/
pull/50

• Update from staging by @justinGilmer in https://github.com/PingThingsIO/btrdb-python/pull/54

• Sort tables by time by default for any pyarrow tables. by @justinGilmer in

• Fix deprecation warnings for pip installations. by @jleifnf in

Full Changelog: GitHub compare view

1.7.3 5.30.2

What’s Changed

• Update readthedocs to new yaml for testing. by @justinGilmer in https://github.com/PingThingsIO/
btrdb-python/pull/40

• Converting pandas index takes very long, fix this in arrow_table. by @justinGilmer in https://github.com/
PingThingsIO/btrdb-python/pull/41

Full Changelog: 5.30.2

1.7.4 5.30.1

What’s Changed

• Small version bump for pypi release

Full Changelog: 5.30.1

1.7. Changelog 89

https://github.com/pingthingsio/btrdb-python/pull/60
https://github.com/PingThingsIO/btrdb-python/compare/v5.31.0...v5.32.0
https://github.com/PingThingsIO/btrdb-python/pull/48
https://github.com/PingThingsIO/btrdb-python/pull/48
https://github.com/PingThingsIO/btrdb-python/pull/47
https://github.com/PingThingsIO/btrdb-python/pull/47
https://github.com/PingThingsIO/btrdb-python/pull/49
https://github.com/PingThingsIO/btrdb-python/pull/49
https://github.com/PingThingsIO/btrdb-python/pull/50
https://github.com/PingThingsIO/btrdb-python/pull/50
https://github.com/PingThingsIO/btrdb-python/pull/54
https://github.com/PingThingsIO/btrdb-python/compare/v5.30.2...v5.31.0
https://github.com/PingThingsIO/btrdb-python/pull/40
https://github.com/PingThingsIO/btrdb-python/pull/40
https://github.com/PingThingsIO/btrdb-python/pull/41
https://github.com/PingThingsIO/btrdb-python/pull/41
https://github.com/PingThingsIO/btrdb-python/compare/v5.30.1.\kern \fontdimen 3\font .\kern \fontdimen 3\font .\kern \fontdimen 3\font v5.30.2
https://github.com/PingThingsIO/btrdb-python/compare/v5.30.0.\kern \fontdimen 3\font .\kern \fontdimen 3\font .\kern \fontdimen 3\font v5.30.1

btrdb-python Documentation, Release v5.32

1.7.5 5.30.0

What’s Changed

• Merge Arrow support into Main for Release by @youngale-pingthings in https://github.com/PingThingsIO/
btrdb-python/pull/37

– This PR contains many changes that support the commercial Arrow data fetches and inserts

– arrow_ prefixed methods for Stream Objects:

∗ insert, aligned_windows, windows, values

– arrow_ prefixed methods for StreamSet` objects:

∗ insert, values, to_dataframe, to_polars, to_arrow_table, to_numpy, to_dict,
to_series

• Justin gilmer patch 1 by @justinGilmer in https://github.com/PingThingsIO/btrdb-python/pull/39

Full Changelog: 5.30.0

1.7.6 5.28.1

What’s Changed

• Upgrade ray versions by @jleifnf in https://github.com/PingThingsIO/btrdb-python/pull/15

• Release v5.28.1 and Update Python by @youngale-pingthings in https://github.com/PingThingsIO/
btrdb-python/pull/17

New Contributors

• @jleifnf made their first contribution in https://github.com/PingThingsIO/btrdb-python/pull/15

Full Changelog: 5.28.1

90 Chapter 1. User Guide

https://github.com/PingThingsIO/btrdb-python/pull/37
https://github.com/PingThingsIO/btrdb-python/pull/37
https://github.com/PingThingsIO/btrdb-python/pull/39
https://github.com/PingThingsIO/btrdb-python/compare/v5.28.1.\kern \fontdimen 3\font .\kern \fontdimen 3\font .\kern \fontdimen 3\font v5.30.0
https://github.com/PingThingsIO/btrdb-python/pull/15
https://github.com/PingThingsIO/btrdb-python/pull/17
https://github.com/PingThingsIO/btrdb-python/pull/17
https://github.com/PingThingsIO/btrdb-python/pull/15
https://github.com/PingThingsIO/btrdb-python/compare/v5.15.1.\kern \fontdimen 3\font .\kern \fontdimen 3\font .\kern \fontdimen 3\font v5.28.1

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

91

btrdb-python Documentation, Release v5.32

92 Chapter 2. Indices and tables

PYTHON MODULE INDEX

b
btrdb, 32
btrdb.conn, 33
btrdb.exceptions, 79
btrdb.point, 77
btrdb.stream, 41
btrdb.transformers, 80
btrdb.utils.timez, 86

93

btrdb-python Documentation, Release v5.32

94 Python Module Index

INDEX

A
aligned_windows() (btrdb.stream.Stream method), 42
aligned_windows() (btrdb.stream.StreamSet method),

62
AmbiguousStream, 79
annotations() (btrdb.stream.Stream method), 43
arrow_aligned_windows() (btrdb.stream.Stream

method), 44
arrow_insert() (btrdb.stream.Stream method), 45
arrow_insert() (btrdb.stream.StreamSet method), 62
arrow_to_arrow_table() (btrdb.stream.StreamSet

method), 63
arrow_to_arrow_table() (in module

btrdb.transformers), 84
arrow_to_dataframe() (btrdb.stream.StreamSet

method), 63
arrow_to_dataframe() (in module

btrdb.transformers), 82
arrow_to_dict() (btrdb.stream.StreamSet method), 65
arrow_to_dict() (in module btrdb.transformers), 80
arrow_to_numpy() (btrdb.stream.StreamSet method),

65
arrow_to_numpy() (in module btrdb.transformers), 80
arrow_to_polars() (btrdb.stream.StreamSet method),

65
arrow_to_polars() (in module btrdb.transformers), 84
arrow_to_series() (btrdb.stream.StreamSet method),

65
arrow_to_series() (in module btrdb.transformers), 80
arrow_values() (btrdb.stream.Stream method), 46
arrow_values() (btrdb.stream.StreamSet method), 67
arrow_windows() (btrdb.stream.Stream method), 47

B
BadSQLValue, 80
BadValue, 79
btrdb

module, 32
btrdb (btrdb.stream.Stream property), 48
BTrDB (class in btrdb.conn), 33
btrdb.conn

module, 33

btrdb.exceptions
module, 79

btrdb.point
module, 77

btrdb.stream
module, 41

btrdb.transformers
module, 80

btrdb.utils.timez
module, 86

BTrDBError, 79
BTRDBServerError, 79
BTRDBTypeError, 79
BTRDBValueError, 79

C
clone() (btrdb.stream.StreamSet method), 67
collection (btrdb.stream.Stream property), 48
collection_metadata() (btrdb.conn.BTrDB method),

34
connect() (in module btrdb), 32
ConnectionError, 79
count (btrdb.point.StatPoint property), 78
count() (btrdb.stream.Stream method), 49
count() (btrdb.stream.StreamSet method), 67
create() (btrdb.conn.BTrDB method), 35
CredentialsFileNotFound, 79
current() (btrdb.stream.Stream method), 50
current() (btrdb.stream.StreamSet method), 68
currently_as_ns() (in module btrdb.utils.timez), 86

D
datetime_to_ns() (in module btrdb.utils.timez), 86
delete() (btrdb.stream.Stream method), 50

E
earliest() (btrdb.stream.Stream method), 51
earliest() (btrdb.stream.StreamSet method), 68
exists() (btrdb.stream.Stream method), 52

F
filter() (btrdb.stream.StreamSet method), 69

95

btrdb-python Documentation, Release v5.32

flush() (btrdb.stream.Stream method), 52

I
index() (btrdb.stream.StreamSet method), 70
info() (btrdb.conn.BTrDB method), 35
insert() (btrdb.stream.Stream method), 53
insert() (btrdb.stream.StreamSet method), 70
InvalidCollection, 79
InvalidOperation, 79
InvalidPointWidth, 79
InvalidTagKey, 79
InvalidTagValue, 79
InvalidTimeRange, 79

L
latest() (btrdb.stream.Stream method), 53
latest() (btrdb.stream.StreamSet method), 71
list_collections() (btrdb.conn.BTrDB method), 36
list_unique_annotations() (btrdb.conn.BTrDB

method), 36
list_unique_names() (btrdb.conn.BTrDB method), 37
list_unique_units() (btrdb.conn.BTrDB method), 37

M
max (btrdb.point.StatPoint property), 78
mean (btrdb.point.StatPoint property), 78
min (btrdb.point.StatPoint property), 78
module

btrdb, 32
btrdb.conn, 33
btrdb.exceptions, 79
btrdb.point, 77
btrdb.stream, 41
btrdb.transformers, 80
btrdb.utils.timez, 86

N
name (btrdb.stream.Stream property), 54
nearest() (btrdb.stream.Stream method), 54
NoSuchPoint, 80
ns_delta() (in module btrdb.utils.timez), 86
ns_to_datetime() (in module btrdb.utils.timez), 87

O
obliterate() (btrdb.stream.Stream method), 55

P
PermissionDenied, 79
pin_versions() (btrdb.stream.StreamSet method), 72
ProfileNotFound, 79

Q
query() (btrdb.conn.BTrDB method), 38

R
RawPoint (class in btrdb.point), 77
RecycledUUID, 79
refresh_metadata() (btrdb.stream.Stream method), 55
rows() (btrdb.stream.StreamSet method), 72

S
StatPoint (class in btrdb.point), 77
stddev (btrdb.point.StatPoint property), 78
Stream (class in btrdb.stream), 41
stream_from_uuid() (btrdb.conn.BTrDB method), 39
StreamExists, 79
StreamNotFoundError, 79
streams() (btrdb.conn.BTrDB method), 39
streams_in_collection() (btrdb.conn.BTrDB

method), 40
StreamSet (class in btrdb.stream), 59

T
tags() (btrdb.stream.Stream method), 55
time (btrdb.point.RawPoint property), 77
time (btrdb.point.StatPoint property), 78
to_array() (btrdb.stream.StreamSet method), 73
to_array() (in module btrdb.transformers), 84
to_csv() (btrdb.stream.StreamSet method), 73
to_csv() (in module btrdb.transformers), 85
to_dataframe() (btrdb.stream.StreamSet method), 73
to_dataframe() (in module btrdb.transformers), 85
to_dict() (btrdb.stream.StreamSet method), 74
to_dict() (in module btrdb.transformers), 84
to_nanoseconds() (in module btrdb.utils.timez), 87
to_polars() (btrdb.stream.StreamSet method), 74
to_polars() (in module btrdb.transformers), 85
to_series() (btrdb.stream.StreamSet method), 74
to_series() (in module btrdb.transformers), 85
to_table() (btrdb.stream.StreamSet method), 75

U
unit (btrdb.stream.Stream property), 56
update() (btrdb.stream.Stream method), 56
uuid (btrdb.stream.Stream property), 57

V
value (btrdb.point.RawPoint property), 77
values() (btrdb.stream.Stream method), 57
values() (btrdb.stream.StreamSet method), 75
version() (btrdb.stream.Stream method), 58
VersionNotAvailable, 80
versions() (btrdb.stream.StreamSet method), 75

W
windows() (btrdb.stream.Stream method), 58
windows() (btrdb.stream.StreamSet method), 76

96 Index

	User Guide
	Quick Start
	Connecting to a server
	Get Platform Information

	Retrieving a Stream
	Find streams by collection
	Find stream by UUID

	Viewing a Stream’s Data
	Return data as arrow tables

	Using StreamSets
	Return data as arrow tables

	Installing
	Installing with pip
	Installing with Anaconda

	Concepts
	BTrDB Server
	Points
	RawPoint
	StatPoint

	Tabular Data
	Streams
	StreamSets
	Apache-Arrow Accelerated Methods

	Working with btrdb
	Server Connection and Info
	Connecting to servers
	Using Profiles
	Connection Info Resolution

	Viewing server status

	Querying and Managing Streams
	Create a Stream
	Delete a Stream
	Find by UUID
	Look up collections
	Finding by collection
	Querying Metadata

	Managing Stream Data
	Inserting Data
	Deleting Data

	Managing Stream Metadata
	Viewing Metadata
	UUID
	Tags
	Annotations
	Name and Collection

	Updating Metadata

	Viewing Stream Data
	View Individual Data Points
	Helpers for Dates/Times

	View Windows of Data

	Working with StreamSets
	Creating a StreamSet
	Filtering
	Retrieving Data
	StreamSet.values()
	StreamSet.rows()

	Transforming to Other Formats
	Serializing Data

	Multiprocessing
	Multistream Queries
	Arrow-enabled Queries
	Apache Arrow Data Format
	True Multistream Support

	Working with Dash and Plotly
	Non-Multistream API
	Multistream API

	Working with Ray
	Setting up the ray serializer

	BTrDB Explained
	Summary
	The Tree Structure
	Appendix

	API Reference
	btrdb
	btrdb.conn
	btrdb.stream
	btrdb.point
	btrdb.exceptions
	btrdb.transformers
	btrdb.utils.timez

	Changelog
	5.32.0
	What’s Changed
	Fixed
	Deprecated

	5.31.0
	What’s Changed

	5.30.2
	What’s Changed

	5.30.1
	What’s Changed

	5.30.0
	What’s Changed

	5.28.1
	What’s Changed
	New Contributors

	Indices and tables
	Python Module Index
	Index

